

JEE MAIN 29 JANUARY 2025 SHIFT 2

PHYSICS QUESTION PAPER WITH ANSWER KEY

Q.No.	Questions	Answers										
1	An equiconvex lens is cut into two ways as shown. If the focal length of the parts are as mentioned in the diagram. Find L_1/L_2	1/2										
2	A solenoid of radius 10 cm carrying current 0.29 A and having total 200 turns. If magnetic field inside solenoid is 2.9×10^{-9} Find length of solenoid	$8\pi\text{cm}$										
3	<p>Three identical particles, each of mass m move under the influence of mutual attraction forces. Initially they are on the vertices of an equipotential triangle of side 'a' and have equal speed v direct towards the adjacent particles as shown. The net angular momentum about the centre just before collision is</p>	$\sqrt{3}/2 mva$										
4	<p>Match the physical quantities with their corresponding dimensions</p> <table border="1" style="width: 100%; border-collapse: collapse;"> <thead> <tr> <th style="text-align: center;">Column-I</th> <th style="text-align: center;">Column-II</th> </tr> </thead> <tbody> <tr> <td style="text-align: center;">(A) Young's modulus</td> <td style="text-align: center;">(i) $[\text{AL}^2]$</td> </tr> <tr> <td style="text-align: center;">(B) Magnetic moment</td> <td style="text-align: center;">(ii) $[\text{ML}^2\text{T}^{-2}\text{A}^{-1}]$</td> </tr> <tr> <td style="text-align: center;">(C) Magnetic flux</td> <td style="text-align: center;">(iii) $[\text{AL}^{-1}]$</td> </tr> <tr> <td style="text-align: center;">(D) Magnetic Intensity</td> <td style="text-align: center;">(iv) $[\text{ML}^{-1}\text{T}^{-2}]$</td> </tr> </tbody> </table>	Column-I	Column-II	(A) Young's modulus	(i) $[\text{AL}^2]$	(B) Magnetic moment	(ii) $[\text{ML}^2\text{T}^{-2}\text{A}^{-1}]$	(C) Magnetic flux	(iii) $[\text{AL}^{-1}]$	(D) Magnetic Intensity	(iv) $[\text{ML}^{-1}\text{T}^{-2}]$	A (iv) B (i) C (iii) D (ii)
Column-I	Column-II											
(A) Young's modulus	(i) $[\text{AL}^2]$											
(B) Magnetic moment	(ii) $[\text{ML}^2\text{T}^{-2}\text{A}^{-1}]$											
(C) Magnetic flux	(iii) $[\text{AL}^{-1}]$											
(D) Magnetic Intensity	(iv) $[\text{ML}^{-1}\text{T}^{-2}]$											
5	Two particles of same mass are performing SHM vertically with two different springs of spring constants K_1 and K_2 . If amplitude of both is same. Find ratio of the maximum speed of two particles.	$\sqrt{K_1/K_2}$										
6	A physical quality Q is given as $Q = ab^4/cd$, if the percentage error is a, b, c and d are 2%, 1%, 2% and 1% the % error in Q will be	9%										
7	<p>Assertion: On increasing the pressure, the volume decrease is more in an isothermal process than in an adiabatic process.</p> <p>Reason: Adiabatic process is given by PV^{-1}</p>	Assertion is correct and Reason is correct										
8	Two planet A and B are revolving around a massive start such that $r_A = 2r_B$ and $m_A = 4\sqrt{3} m_B$ Find ratio of angular momentum of planet B to planet A.	1/ $2\sqrt{3}$										
9	A capacitor $C_1 = 6\mu\text{F}$, initially charged with a call of emf 5V is disconnected and connected to another capacitor $C_2 = 6\mu\text{F}$, which is initially neutral. The charges on C_1 and C_2 after connection are	$10\mu\text{C}$, $20\mu\text{C}$										

10	<p>Three particles of same mass are moving as shown. (all collisions are elastic)</p> <p></p> <p>S₁ : After all collisions velocities are 4 m/s, 2 m/s and 5 m/s. S₂ : Velocities are get interchanged in elastic collision of same mass.</p>	S1 Incorrect, S2: Correct															
11	An electromagnetic wave propagates in +X direction, then electric field and magnetic field are direct along	Y, Z															
12	A converging lens of focal length 24cm, made of glass (μ_{glass}) is immersed completely in water. ($\mu_{\text{glass}} = 1.33$). It will now behave like a converging lens of focal length ____ cm.	96															
13	<p>The truth table for the logical circuit shown below is</p> <p></p>	<table border="1"> <tr> <td>A</td> <td>B</td> <td>Y</td> </tr> <tr> <td>0</td> <td>0</td> <td>0</td> </tr> <tr> <td>0</td> <td>1</td> <td>1</td> </tr> <tr> <td>1</td> <td>0</td> <td>1</td> </tr> <tr> <td>1</td> <td>1</td> <td>0</td> </tr> </table>	A	B	Y	0	0	0	0	1	1	1	0	1	1	1	0
A	B	Y															
0	0	0															
0	1	1															
1	0	1															
1	1	0															
14	<p>Figure shows two spherical surfaces of radius R having common centre. If the object is placed at O₃ Find the distance between the first images formed by both the surface.</p> <p></p>	4R/35															
15	<p>A dipole is placed such that its axis is perpendicular to the infinite charged sheet. Select the correct options</p> <p></p>	b and c															
16	<p>A cup of coffee take a time 't' to cool from 90 degree Celcius to 80 degree Celcius in a surrounding of 20 degree Celcius. If a similar cup of coffee is cooled from 80 degree Celcius to 60 degree in a same surrounding, it takes a time</p>	13/5 t															
17	<p>Find the number of spectral lines in H-atom when deexcitation from n=4 to ground state</p>	6															
18	<p>For a certain mechanical system the rate of accretion dm/dt is proportional to \sqrt{v}, where m is mass, t is time v is velocity, then the power is proportional to $v^{n/2}$ where n is ____.</p>	5															