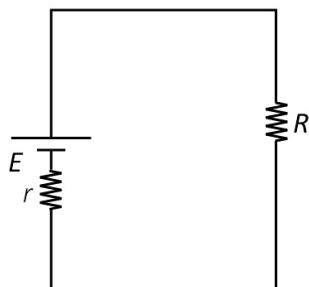

PHYSICS

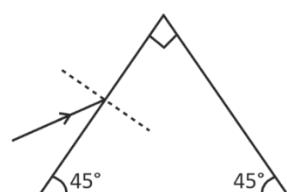
SECTION - A

Multiple Choice Questions: This section contains 20 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4), out of which **ONLY ONE** is correct.

Choose the correct answer:


1. In a circuit there is a battery with internal resistance r and Emf E , which is connected to external load resistance R as shown. Find value of R so that maximum power dissipates across R .

(1) $R = r$
 (2) $R = r/2$
 (3) $R = \sqrt{2}r$
 (4) $R = 2r$


Answer (1)

Sol.

Maximum power transfer occurs for $R = r$.

2. Refractive index of prism is $\sqrt{2}$. What should be angle of incidence for a light ray such that the emerging ray grazes out of the surface.

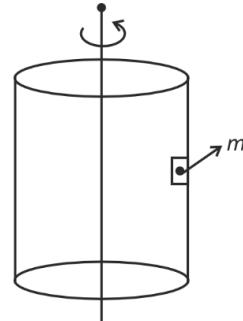
(1) 90°
 (3) 30°
 (2) 60°
 (4) 45°

Answer (1)

Sol. $r_1 + r_2 = 90^\circ$

$$\sqrt{2} = \frac{\sin i}{\sin r_1}$$

$$\text{and } \sqrt{2} = \frac{1}{\sin r_2}$$


$$\sin r_2 = \frac{1}{\sqrt{2}}$$

$$r_2 = 45^\circ$$

$$r_1 = 45^\circ$$

$$\therefore I = 90^\circ$$

3. A block of mass m is at rest w.r.t. hollow cylinder which is rotating with angular speed ω , radius of cylinder is R . Find minimum coefficient of friction between block and cylinder.

(1) $\frac{3g}{2\omega^2 R}$
 (2) $\frac{g}{\omega^2 R}$
 (3) $\frac{g}{4\omega^2 R}$
 (4) $\frac{2g}{\omega^2 R}$

Answer (2)

Our Problem *Solvers* shine bright in **JEE 2025**

JEE (Advanced)

ADVAY
MAYANK
AIR 36

RUJUL
GARG
AIR 41

ARUSH
ANAND
AIR 64

SHREYAS
LOHIYA
AIR 6
Uttar Pradesh Topper
100
100
in Overall

KUSHAGRA
BAINGAHA
AIR 7
Uttar Pradesh Topper
100
100
in Overall

HARSSH
A GUPTA
AIR 15
Telangana Topper
100
100
in Overall

JEE (MAIN)

Sol. Forward biased diode will be allowing current. So current through battery $I = \frac{2.5}{4} = \frac{5}{8} A$

So ΔV across capacitor is

$$\Delta V = \left(\frac{5}{8} \right) \times 3 = \frac{15}{8} \text{ volt}$$

$$\text{So, } q = \frac{5 \times 15}{8} = \frac{75}{8} \mu\text{C}$$

8. An electron in a hydrogen like atom has energy equal to $-0.04 E_0$, where E_0 is magnitude of energy of this electron in ground state in eV. If angular momentum of this electron is L , then value of $\frac{2\pi L}{h}$ is ($h \rightarrow$ Planck's constant)

(1) 1

(2) 4

(3) 5

(4) 6

Answer (3)

Sol. $13.6 Z^2 = E_0$

$$\text{and } \frac{-13.6 Z^2}{n^2} = -0.04 E_0$$

$$n^2 = \frac{1}{0.04} = 25$$

$n = 5$

$$\frac{2\pi L}{n} = \frac{2\pi nh}{n \cdot 2\pi} = 5$$

9. During SHM, K.E. of particle in SHM varies with frequency of 176 Hz. Find out frequency of SHM of the particle.

(1) 352

(2) 176

(3) 88

(4) 44

Answer (3)

Sol. Conceptual.

KE varies with twice the frequency of SHM.

10. Position x of the particle of mass 2kg varies as function of time as $x = t^2 + t + 1$. Find out work done on the particle from $t_1 = 2$ sec to $t_2 = 3$ sec.

(1) 18 joule

(2) 30 joule

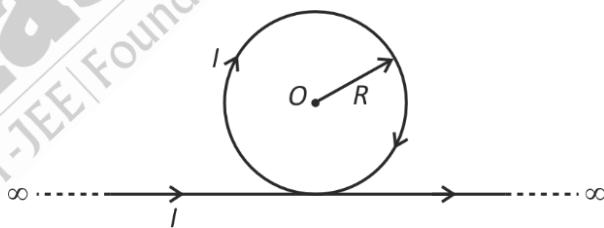
(3) 34 joule

(4) 24 joule

Answer (4)

Sol. $\Delta W = K.E_f - K.E_i$

$$v = \frac{dx}{dt} = 2t + 1$$


$$\text{So, } V_{(1)} = 5 \text{ m/s}$$

$$V_{(2)} = 7 \text{ sec.}$$

$$\Delta \omega = \frac{1}{2} \times 2 \left| V_2^2 - V_1^2 \right|$$

$$\Delta w = 49 - 25 = 24 \text{ Joule}$$

11. Find magnetic field at point 'O' in the given figure shown.

$$(1) \frac{\mu_0 I}{R} \left(2 + \frac{1}{\pi} \right)$$

$$(2) \frac{\mu_0 I}{2R} \left(1 + \frac{1}{\pi} \right)$$

$$(3) \frac{\mu_0 I}{2R} \left(1 - \frac{1}{\pi} \right)$$

$$(4) \frac{\mu_0 I}{4R} \left(2 + \frac{1}{\pi} \right)$$

Answer (3)

Sol. $\frac{\mu_0 I}{2R} \left(1 - \frac{1}{\pi} \right)$

Our Problem *Solvers* shine bright in **JEE 2025**

JEE (Advanced)

ADVAY
MAYANK
AIR 36

RUJUL
GARG
AIR 41

ARUSH
ANAND
AIR 64

and many more...

SHREYAS
LOHIYA
AIR 6
Uttar Pradesh Topper
100th in Overall

KUSHAGRA
BAINGAHA
AIR 7
Uttar Pradesh Topper
100th in Overall

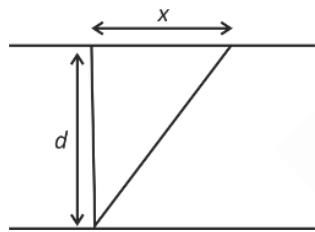
HARSSH
A GUPTA
AIR 15
Telangana Topper
100th in Overall

Sol. $q = q_0 \cos(\omega t)$

$$\frac{q_0}{4} = q_0 \cos(\omega t)$$

$$\frac{1}{\sqrt{LC}} t = \cos^{-1} \left(\frac{1}{4} \right)$$

18. A boat crosses a river, 200 m wide, in minimum possible time. If velocity of river is 5 m/s and velocity of boat is still water is 10 m/s. Then, find time taken to cross the river and displacement of the boat.


(1) 20 sec. and $100\sqrt{5}$ m

(2) 10 sec. and $100\sqrt{5}$ m

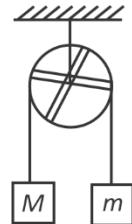
(3) 20 sec. and $200\sqrt{5}$ m

(4) 20 sec. and 200 m

Answer (1)

Sol.

$$10 = \frac{200}{t_{\min}}$$


$$t_{\min} = 20 \text{ sec.}$$

$$x = 5 \times 20 = 100 \text{ m}$$

$$\text{displacement} = \sqrt{100^2 + 200^2}$$

$$= 100\sqrt{5}$$

19. In diagram given below, pulley is a ring of mass M radius R fitted with two rods each of mass m & length $2R$ along diameter such that if pulley rotates, Rods also rotate with same angular velocity.

Find magnitude of acceleration of m when system is released.

$$(1) \frac{3(M-m)g}{(6M+5m)}$$

$$(2) \frac{6(M-m)g}{(6M+5m)}$$

$$(3) \frac{3(M-m)g}{(M+m)}$$

$$(4) \frac{6(M-m)g}{(M+m)}$$

Answer (1)

$$\text{Sol. } (M-m)gR = \left(MR^2 + mR^2 + MR^2 + \frac{2}{3}mR^2 \right) \alpha$$

$$a = \frac{3(M-m)g}{6M+5m}$$

20.

SECTION - B

Numerical Value Type Questions: This section contains 5 Numerical based questions. The answer to each question should be rounded-off to the nearest integer.

21.

22.

23.

24.

25.

Our Problem *Solvers* shine bright in **JEE 2025**

JEE (Advanced)

ADVAY
MAYANK
AIR 36

RUJUL
GARG
AIR 41

ARUSH
ANAND
AIR 64

and many more...

JEE (MAIN)

SHREYAS
LOHIYA
AIR 6
Uttar Pradesh Topper
100th in Overall

KUSHAGRA
BAINGAHA
AIR 7
Uttar Pradesh Topper
100th in Overall

HARSSH
A GUPTA
AIR 15
Telangana Topper
100th in Overall

CHEMISTRY

SECTION - A

Multiple Choice Questions: This section contains 20 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4), out of which **ONLY ONE** is correct.

Choose the correct answer:

1. Given below are two statements :

Statement I : The correct order for radius is Al > Mg > Mg²⁺ > Al³⁺.

Statement II : Atomic size always depends on electronegativity.

In the light of the above statements, choose the correct option.

- (1) Both Statement I and Statement II are correct
- (2) Both Statement I and Statement II are incorrect
- (3) Statement I is correct but Statement II is incorrect
- (4) Statement I is incorrect but Statement II is correct

Answer (3)

Sol. Atomic radius : Mg > Al > Mg²⁺ > Al³⁺

Atomic radius depends on Z_{eff}, number of shells etc.

2. What will be significant figure of summation of 0.153, 153.2 and 1532?

- (1) 3
- (2) 4
- (3) 5
- (4) 6

Answer (2)

Sol. 1532 + 153.2 + 0.153 = 1685.353 = 1685 (least decimal = 0)

3. Given below are two statements :

Statement-I : Crystal field stabilisation energy (magnitude) of [Co(H₂O)₆]²⁺ is greater than [Ni(H₂O)₆]²⁺

Statement-II : Order of bond energy is Cl₂ > Br₂ > F₂ > I₂.

In the light of above statements choose the correct option.

- (1) Statement-I and Statement-II both are correct
- (2) Statement-I and Statement-II both are incorrect
- (3) Statement-I is correct, Statement-II is incorrect
- (4) Statement-I is incorrect, Statement-II is correct

Answer (4)

Sol. [Co(H₂O)₆]²⁺

H₂O is WFL with Co²⁺

$$3d^7 \Rightarrow t_{2g}^5 e_g^2$$

$$CFSE = -0.4 \times 5\Delta_o + 2 \times 0.6 \Delta_o$$

$$= -2.0\Delta_o + 1.2\Delta_o$$

$$= -0.8\Delta_o$$

[Ni(H₂O)₆]²⁺

H₂O \Rightarrow WFL

$$3d^8 \Rightarrow t_{2g}^6 e_g^2$$

$$CFSE = -0.4 \times 6\Delta_o + 0.6 \times 2 \Delta_o$$

Our Problem *Solvers* shine bright in **JEE 2025**

JEE (Advanced)

ADVAY
MAYANK
AIR 36

RUJUL
GARG
AIR 41

ARUSH
ANAND
AIR 64

and many more...

JEE (MAIN)

SHREYAS
LOHIYA
AIR 6
Uttar Pradesh Topper
100th in Overall

KUSHAGRA
BAINGAHA
AIR 7
Uttar Pradesh Topper
100th in Overall

HARSSH
A GUPTA
AIR 15
Telangana Topper
100th in Overall

$$= -2.4\Delta_o + 1.2\Delta_o$$

$$= -1.2 \Delta_o$$

(BDE in kJ/mol)

$$F_2 \Rightarrow 158.8$$

$$Cl_2 = 242.6$$

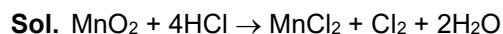
$$Br_2 = 192.8$$

$$I_2 = 151.1$$

Order of BDE $\Rightarrow Cl_2 > Br_2 > F_2 > I_2$

4. When 8.74 g MnO_2 is treated with HCl, then what will be the weight of $Cl_2(g)$ obtained?

Molar mass of MnO_2 = 87.4 g/mol


(1) 7.1 g

(2) 17.1 g

(3) 14.2 g

(4) 3.55 g

Answer (1)

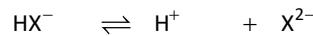
$$\frac{8.74}{87.4} = 0.1 \quad 0.1 \text{ mol}$$

$$M_{Cl_2} \approx 7.1 \text{ g}$$

5. Find concentration of X^{2-} at equilibrium in 0.1 M H_2X .

Given $K_{a_1} = 2.5 \times 10^{-7}$

$$K_{a_2} = 1 \times 10^{-13}$$


(1) 2.5×10^{-7}

(2) 1×10^{-13}

(3) 6×10^{-12}

(4) 5×10^{-10}

Answer (2)

$$C\alpha$$

$$C\alpha - Y \quad C\alpha + Y \quad Y$$

$$K_{a_2} = \frac{[H^+][X^{2-}]}{[HX^-]} = \frac{(C\alpha + Y)(Y)}{(C\alpha - Y)}$$

Since K_{a_2} is very small

Hence $Y \approx 0 \quad C\alpha \gg Y$

$$K_{a_2} = [X^{2-}]$$

$$[X^{2-}] = 1 \times 10^{-13}$$

6. What will be the ratio of wavelength of 3rd line of Paschen Series to 2nd line of Balmer series of H-atom?

(1) $\frac{9}{4}$

(2) $\frac{3}{2}$

(3) $\frac{2}{3}$

(4) $\frac{16}{4}$

Answer (1)

Sol.
$$\frac{\frac{1}{\lambda_p}}{\frac{1}{\lambda_B}} = \frac{\left(\frac{1}{3^2}\right) - \left(\frac{1}{6^2}\right)}{\left(\frac{1}{2^2}\right) - \left(\frac{1}{4^2}\right)} \Rightarrow \frac{4}{9}$$

$$\frac{\lambda_p}{\lambda_B} = \frac{9}{4}$$

Our Problem *Solvers* shine bright in **JEE 2025**

JEE (Advanced)

ADVAY
MAYANK
AIR 36

RUJUL
GARG
AIR 41

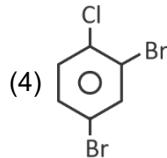
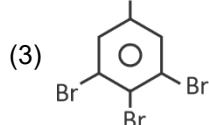
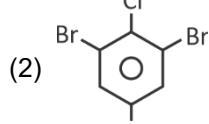
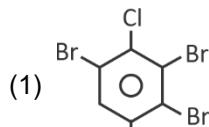
ARUSH
ANAND
AIR 64

and many more...

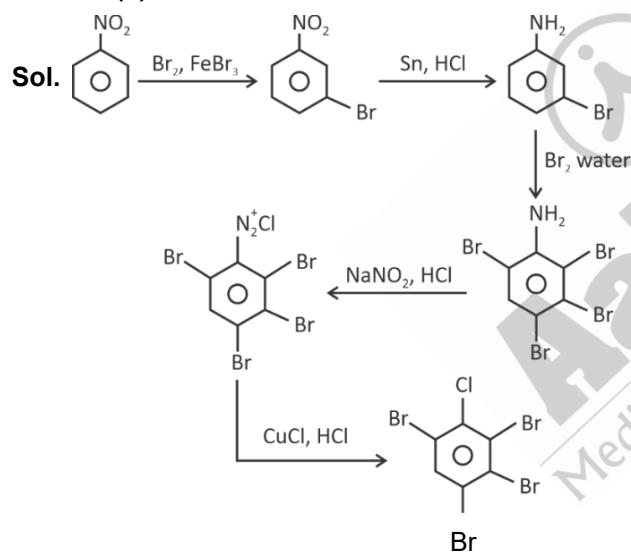
JEE (MAIN)

SHREYAS
LOHIYA
AIR 6
Uttar Pradesh Topper
100th in Overall

KUSHAGRA
BAINGAHA
AIR 7
Uttar Pradesh Topper
100th in Overall

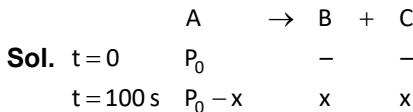





HARSSH
A GUPTA
AIR 15
Telangana Topper
100th in Overall



The final product 'E' is

Answer (1)


12. For first order kinetics reaction,

If initial pressure of A is 1 bar and at time 100 s, the total pressure is 1.5 bar, then find the rate constant of the reaction.

- (1) $6.93 \times 10^{-3} \text{ s}^{-1}$
- (2) $6.93 \times 10^{-2} \text{ s}^{-1}$
- (3) 0.693 s^{-1}
- (4) 6.93 s^{-1}

Answer (1)

$$P_t = P_0 + x$$

$$x = P_t - P_0$$

$$k = \frac{2.303}{100} \log \frac{P_0}{P_0 - P_t + P_0}$$

$$k = \frac{2.303}{100} \log \frac{P_0}{2P_0 - P_t}$$

$$k = \frac{2.303}{100} \log \frac{1}{2 - 1.5}$$

$$\begin{aligned} k &= \frac{2.303}{100} \log 2 = \frac{2.303 \log 2}{100} \\ &= 0.693 \times 10^{-2} \\ &= 6.93 \times 10^{-3} \text{ s}^{-1} \end{aligned}$$

13. Energy of first line of Lyman series – A
 Energy of second line of Balmer series – B
 Energy of first line of Balmer series – C
 Energy of second line of Lyman series – D
 What will be the correct decreasing order of energies of photons?

- (1) C > A > B > D
- (2) D < A > B > C
- (3) D > A > C > B
- (4) D > A > B > C

Answer (4)

Sol. A. Lyman/1st line $\Delta E = 13.6 - 3.4 = 10.2 \text{ eV}$
 B. Balmer/2nd line $\Delta E = 3.4 - 0.85 = 2.55 \text{ eV}$
 C. Balmer/1st line $\Delta E = 3.4 - 1.51 = 1.89 \text{ eV}$
 D. Lyman/2nd line $\Delta E = 13.6 - 1.51 = 12.09 \text{ eV}$

Our Problem *Solvers* shine bright in **JEE 2025**

JEE (Advanced)

ADVAY
MAYANK
AIR 36

RUJUL
GARG
AIR 41

ARUSH
ANAND
AIR 64

and many more...

JEE (MAIN)

SHREYAS
LOHIYA
AIR 6
Uttar Pradesh Topper
100th in Overall

KUSHAGRA
BAINGAHA
AIR 7
Uttar Pradesh Topper
100th in Overall

HARSSH
A GUPTA
AIR 15
Telangana Topper
100th in Overall

14. Which compound is optically inactive out of following

n-propyl chloride, secondary butyl chloride ,

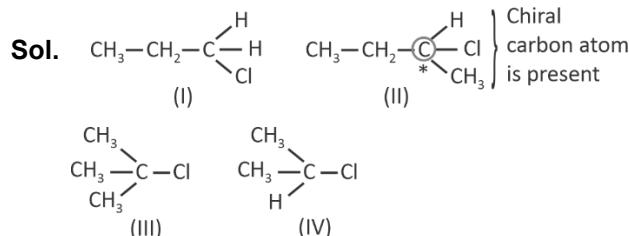
(I)

(II)

tert butyl chloride , isopropyl chloride .

(III)

(IV)


(1) Only I, III, IV

(2) Only IV

(3) Only I, II, III

(4) Only II, III, IV

Answer (1)

15. Which of the following statements are true?

(i) Mn has highest oxidation state in Mn_2O_7

(ii) MnO is more ionic than Mn_2O_7

(iii) Mn_2O_7 has one bridging O atom

(iv) Oxidation state of Mn is generally maximum in oxo compounds

(1) Only (i), (ii), (iii) are correct

(2) All (i), (ii), (iii) and (iv) are correct

(3) Only (i), (iii) and (iv) are correct

(4) Only (i) and (iv) are correct

Answer (2)

Sol.

(i) $Mn_2O_7 \rightarrow Mn$ is +7 (oxidation state)

(ii) MnO is more ionic than Mn_2O_7 .

(iii) Each Mn is tetrahedrally surrounded by 4 oxygen atom and one oxygen is bridging ($Mn-O-Mn$)

(iv) In Mn_2O_7 the Mn is in +7 oxidation state (Maximum)

16. Match the two columns

	List-I (Name reaction)		List-II Reagent(s)
(A)	Etard reaction	(i)	$H_2/Pd-BaSO_4$
(B)	Gattermann Koch reaction	(ii)	(a) $SnCl_2 + HCl$ (b) H_3O^+
(C)	Stephen reaction	(iii)	$CO + HCl/AICl_3$ (anhy)
(D)	Rosenmund reduction	(iv)	(a) CrO_2Cl_2/CS_2 (b) H_3O^+

Choose the correct answer:

(1) A – iv, B – ii, C – iii, D – i

(2) A – iv, B – iii, C – ii, D – i

(3) A – iv, B – iii, C – i, D – ii

(4) A – iv, B – i, C – iii, D – ii

Answer (2)

Sol.

Etard reaction	CrO_2Cl_2/H^+
Gattermann Koch	$CO + HCl/AICl_3$
Stephen reaction	$SnCl_2 + HCl$
Rosenmund reduction	$H_2, Pd-BaSO_4$

17. In which of the following pairs first compound have more covalent nature than second compound?

(a) $SnCl_2$, $SnCl_4$

(b) $PbCl_4$, $PbCl_2$

(c) UF_6 , UF_4

(1) Only (a) and (b)

(2) Only (b) and (c)

(3) Only (a) and (c)

(4) Only (c)

Answer (2)

Sol. More the charge on cation more will be polarising power and more will be covalent character.

Our Problem *Solvers* shine bright in **JEE 2025**

JEE (Advanced)

ADVAY
MAYANK
AIR 36

RUJUL
GARG
AIR 41

ARUSH
ANAND
AIR 64

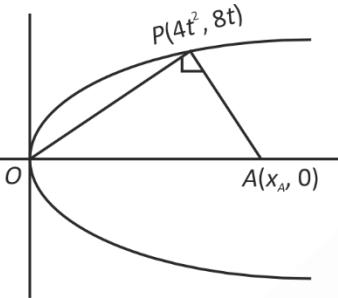
SHREYAS
LOHIYA
AIR 6
Uttar Pradesh Topper
100th in Overall

KUSHAGRA
BAINGAHA
AIR 7
Uttar Pradesh Topper
100th in Overall

HARSSH
A GUPTA
AIR 15
Telangana Topper
100th in Overall

MATHEMATICS

SECTION - A


Multiple Choice Questions: This section contains 20 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4), out of which **ONLY ONE** is correct.

Choose the correct answer :

1. Let O be the vertex of the parabola $y^2 = 16x$. The locus of centroid of $\triangle OPA$ when P lies on parabola and A lies on x -axis and $\angle OPA = 90^\circ$

(1) $y^2 = 8(3x - 16)$ (2) $9y^2 = 8(3x - 16)$
 (3) $y^2 = 8(3x + 16)$ (4) $9y^2 = 8(3x + 16)$

Answer (2)

Sol.

$$m_{OP} \cdot m_{PA} = -1$$

$$\frac{2}{t} \cdot \frac{8t}{4t^2 - x_A} = -1$$

$$-16 = 4t^2 - x_A$$

$$x_A = 4t^2 + 16$$

$$h = \frac{4t^2 + 4t^2 + 16}{3} \quad k = \frac{8t}{3}$$

$$h = \frac{8t^2 + 16}{3} \quad t = \frac{3k}{8}$$

$$3h - 16 = 8 \left[\frac{3k}{8} \right]^2$$

Replace (h, k) with (x, y)

$$3x - 16 = \frac{9y^2}{8}$$

$$9y^2 = 8(3x - 16)$$

2. If the product

$$\left(\frac{1}{15C_0} + \frac{1}{15C_1} \right) \left(\frac{1}{15C_1} + \frac{1}{15C_2} \right) \cdots \left(\frac{1}{15C_{12}} + \frac{1}{15C_{13}} \right) = \frac{\alpha^{13}}{14C_0 \cdot 14C_1 \cdot 14C_2 \cdots 14C_{12}}, \text{ then } 30\alpha \text{ is equal to}$$

(1) 16 (2) 32
 (3) 15 (4) 28

Answer (2)

Sol. Notice that

$$\begin{aligned} \frac{1}{nC_r} + \frac{1}{nC_{r+1}} &= \frac{{}^nC_{r+1} + {}^nC_r}{{}^nC_r \cdot {}^nC_{r+1}} = \frac{{}^{n+1}C_{r+1}}{{}^nC_r \cdot {}^nC_{r+1}} \\ &= \frac{r+1 + {}^nC_r}{{}^nC_r \cdot {}^nC_{r+1}} = \frac{(n+1)}{(r+1) \cdot \frac{n}{r+1} \cdot {}^{n-1}C_r} = \frac{n+1}{n \cdot {}^{n+1}C_r} \\ \therefore \left(\frac{1}{15C_0} + \frac{1}{15C_1} \right) \left(\frac{1}{15C_1} + \frac{1}{15C_2} \right) \cdots \left(\frac{1}{15C_{12}} + \frac{1}{15C_{13}} \right) &= \frac{16}{15 \cdot {}^{14}C_0} \cdot \frac{16}{15 \cdot {}^{14}C_1} \cdots \frac{16}{15 \cdot {}^{14}C_{12}} \\ &= \frac{\left(\frac{16}{15} \right)^{13}}{14C_0 \cdot 14C_1 \cdot 14C_2 \cdots 14C_{12}} \\ \therefore \alpha &= \frac{16}{15} \end{aligned}$$

$$\therefore 30\alpha = 32.$$

Our Problem *Solvers* shine bright in **JEE 2025**

JEE (Advanced)

ADVAY
MAYANK
AIR 36

RUJUL
GARG
AIR 41

ARUSH
ANAND
AIR 64

SHREYAS
LOHIYA
AIR 6
Uttar Pradesh Topper
100th in Overall

KUSHAGRA
BAINGAHA
AIR 7
Uttar Pradesh Topper
100th in Overall

HARSSH
A GUPTA
AIR 15
Telangana Topper
100th in Overall

3. If probability distribution is given by,

x	0	1	2	3
$p(n)$	$\frac{8a-1}{30}$	$\frac{4a-1}{30}$	$\frac{2a+1}{30}$	b

$\sigma^2 + \mu^2 = 2$, where σ is standard derivation and μ is mean of distribution than $\frac{a}{b}$ is

(1) $\frac{22}{71}$ (2) $\frac{110}{71}$
 (3) $\frac{220}{71}$ (4) $\frac{1110}{71}$

Answer (4)

Sol.

x	0	1	2	3
$p(n)$	$\frac{8a-1}{30}$	$\frac{4a-1}{30}$	$\frac{2a+1}{30}$	b

$$\mu = \sum x P(n) \\ = \frac{(4a-1)}{30} + 2\left(\frac{2a+1}{30}\right) + 36 = \frac{16a + 90b}{30}$$

$$\sigma^2 = \sum x^2 P(n) - \mu^2$$

$$\sigma^2 + \mu^2 = \sum x^2 P(n) = 2$$

$$= \left(\frac{4a-1}{30}\right)(1) + \left(\frac{2a+1}{30}\right)4 + 9b = 2$$

$$= 4a - 1 + 8a + 4 + 270b = 60$$

$$= 12a + 270b = 57$$

$$= 4a + 90b = 19$$

$$\sum P(n) = 1 \Rightarrow 14a - 1 + 30b = 30$$

$$14a + 90b = 31$$

$$\text{Solving we get } a = \frac{37}{19}, b = \frac{71}{570}$$

$$\frac{a}{b} = \frac{1110}{71}$$

4. $\int_0^1 \cot^{-1}(x^2 + x + 1) dx$ is equal to

(1) $\int_0^1 \tan^{-1}(x+1) dx - \int_0^1 \tan^{-1} x dx$
 (2) $\int_0^1 (\tan^{-1}(x+1) + \tan^{-1} x) dx$
 (3) $\int_0^1 4 \tan^{-1} x dx$
 (4) $3 \int_0^1 \tan^{-1}(x+1) dx$

Answer (1)

$$\text{Sol. } I = \int_0^1 \cot^{-1}(x^2 + x + 1) dx \\ = \int_0^1 \tan^{-1}\left(\frac{1}{1+x(x+1)}\right) dx \\ = \int_0^1 \tan^{-1}\left(\frac{(x+1)-x}{1+(x+1)\cdot x}\right) dx \\ = \int_0^1 (\tan^{-1}(1+x) - \tan^{-1} x) dx \\ = \int_0^1 \tan^{-1}(1+x) dx - \int_0^1 (\tan^{-1} x) dx$$

5. Let $f(x) = \lim_{n \rightarrow \infty} \left(\frac{1}{n^3} \sum_{k=1}^n \left[\frac{k^2}{3^x} \right] \right)$, where $[.]$ denotes the greatest integer function, then $12 \sum_{j=1}^{\infty} f(j)$ is equal to

(1) 2 (2) 3
 (3) 4 (4) 1

Answer (1)

Our Problem *Solvers* shine bright in **JEE 2025**

JEE (Advanced)

ADVAY
MAYANK
AIR 36

RUJUL
GARG
AIR 41

ARUSH
ANAND
AIR 64

old IITian now

SHREYAS
LOHIYA
AIR 6
Uttar Pradesh Topper
100th in Overall

KUSHAGRA
BAINGAHA
AIR 7
Uttar Pradesh Topper
100th in Overall

HARSH
A GUPTA
AIR 15
Telangana Topper
100th in Overall

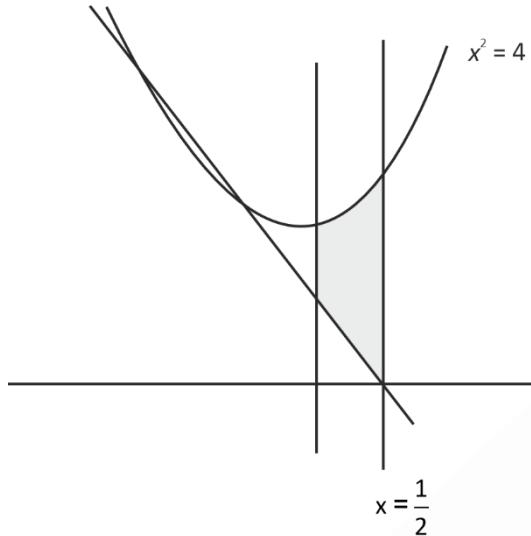
old IITian now

8. The area bounded by

$$2 - 4x \leq y \leq x^2 + 4 \text{ and } x = \frac{1}{2}$$

$x \geq 0, y \geq 0$ (in square unit) is

(1) $\frac{25}{37}$ sq. unit


(2) $\frac{24}{37}$ sq. unit

(3) $\frac{37}{25}$ sq. unit

(4) $\frac{37}{24}$ sq. unit

Answer (4)

Sol.

$$\text{Area} = \int_0^{\frac{1}{2}} (x^2 + 4) - (2 - 4x) dx$$

$$= \frac{x^3}{3} + 2x + 2x^2 \Big|_0^{\frac{1}{2}}$$

$$\Rightarrow \frac{37}{24} \text{ sq unit}$$

9. Let $A = \{2, 3, 5, 7, 11\}$ and a relation R is defined as $R = \{(x, y) : x, y \in A, 2x \leq 3y\}$. Then minimum number of elements are to be added to relation R such that R becomes symmetric relation is

(1) 4

(2) 8

(3) 7

(4) 6

Answer (2)

Sol. $R = \{(x, y) : 2x \leq 3y\}$

$\{(2, 2), (3, 2)\}$

$(3, 3), (2, 3)$

$(5, 5), (2, 5), (3, 5), (7, 5)$

$(7, 7), (2, 7), (3, 7), (5, 7)$

$(11, 12), (2, 11), (3, 11), (5, 11), (7, 11)\}$

Since we want the relation to be symmetric relation,

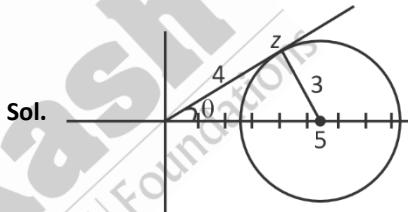
We need to add

$(5, 2), (5, 3), (7, 2), (7, 3), (11, 2), (11, 3), (11, 5), (11, 7)$

\Rightarrow 8 elements need to be added.

10. Let z be the complex number satisfying $|z - 5| \leq 3$ and having maximum possible positive argument, then the

value of $34 \left| \frac{5z - 12}{5z + 16} \right|^2$ is equal to


(1) 20

(2) 17

(3) 7

(4) 21

Answer (1)

$$\Rightarrow \arg(z) = \sin^{-1}\left(\frac{3}{5}\right) = \tan^{-1}\left(\frac{3}{4}\right).$$

$$\Rightarrow z = |z|^{i\theta}$$

$$= 4 \times (\cos\theta + i\sin\theta)$$

$$= 4 \times \left(\frac{4}{5} + i\frac{3}{5}\right)$$

$$= \frac{16}{5} + \frac{12i}{5}$$

$$\Rightarrow 5z = 16 + 12i$$

$$5zi = 16i - 12$$

$$\left(\frac{5z - 12}{5zi + 16} \right) = \frac{(4 + 12i)}{(4 + 16i)} = \frac{(1 + 3i)}{(1 + 4i)}.$$

Our Problem *Solvers* shine bright in **JEE 2025**

JEE (Advanced)

ADVAY
MAYANK
AIR 36

RUJUL
GARG
AIR 41

ARUSH
ANAND
AIR 64

old Exam Results

SHREYAS
LOHIYA
AIR 6

Uttar Pradesh Topper
100th in Overall

KUSHAGRA
BAINGAHA
AIR 7

Uttar Pradesh Topper
100th in Overall

HARSH
A GUPTA
AIR 15

Telangana Topper
100th in Overall

$$\Rightarrow \left| \frac{5z-12}{5zi+16} \right| = \frac{\sqrt{10}}{\sqrt{17}}.$$

$$34 \left| \frac{5z-12}{5zi+16} \right|^2 = 34 \times \frac{10}{17} = 20.$$

11. Let $f(x) = x^3 + x^2f'(1) + 2xf''(2) + f'''(3) \quad \forall x \in \mathbb{R}$ then the value of $f'(5)$ is

(1) $\frac{109}{5}$ (2) $\frac{117}{5}$
 (3) $\frac{119}{5}$ (4) $\frac{118}{5}$

Answer (2)

Sol. Let $f(1) = a$

$$\begin{aligned} f'(2) &= b \\ f'(3) &= c \\ f(x) &= x^3 + ax^2 + bx + c \\ f'(x) &= 3x^2 + 2ax + b \\ f'(1) &= a = 3 + 2a + b \Rightarrow a + b = 3 \dots (1) \\ f''(x) &= 6x + 2a \end{aligned}$$

$$\Rightarrow f''(2) = 12 + 2a = \frac{b}{2} \Rightarrow 4a - b = -24$$

$$\Rightarrow f''(x) = 6$$

$$\Rightarrow f''(3) = c = 6$$

$$\Rightarrow a = \frac{-27}{5}, b = \frac{12}{5}$$

$$f'(5) = 75 + 10a + b$$

$$= 75 - 54 + \frac{12}{5}$$

$$= 21 + \frac{12}{5} = \frac{117}{5}$$

12.

13.

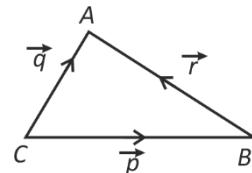
14.

15.

16.

17.

18.

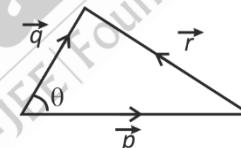

19.

20.

SECTION - B

Numerical Value Type Questions: This section contains 5 Numerical based questions. The answer to each question should be rounded-off to the nearest integer.

21. If three vectors are given as shown.


If angle between vectors \vec{p} and \vec{q} is 0 where

$$\cos\theta = \frac{1}{\sqrt{3}} \text{ and } |\vec{p}| = 2\sqrt{3}, |\vec{q}| = 2.$$

Then the value of $|\vec{p} \times (\vec{q} - 3\vec{r})|^2 - 3|\vec{r}|^2$ is

Answer (104)

Sol.

$$\vec{p} + \vec{r} - \vec{q} = 0 \Rightarrow \vec{r} = \vec{q} - \vec{p}$$

$$\cos\theta = \frac{|\vec{p}|^2 + |\vec{q}|^2 - |\vec{r}|^2}{2|\vec{p}||\vec{q}|} = \frac{12 + 4 - |\vec{r}|^2}{2 \times 2 \times 2\sqrt{3}}$$

$$\frac{16 - |\vec{r}|^2}{8\sqrt{3}} = \frac{1}{\sqrt{3}} \Rightarrow |\vec{r}|^2 = 8$$

$$|\vec{p} \times (\vec{q} - 3(\vec{q} - \vec{p}))|^2 - 3|\vec{r}|^2$$

Our Problem *Solvers* shine bright in **JEE 2025**

JEE (Advanced)

ADVAY
MAYANK
AIR 36

RUJUL
GARG
AIR 41

ARUSH
ANAND
AIR 64

SHREYAS
LOHIYA
AIR 6
Uttar Pradesh Topper
100th in Overall

KUSHAGRA
BAINGAHA
AIR 7
Uttar Pradesh Topper
100th in Overall

HARSSH
A GUPTA
AIR 15
Telangana Topper
100th in Overall

JEE (MAIN)

$$\begin{aligned}
 A^2 &= 2A - I, A^3 = 2A^2 - A = 2(2A - I) - A = 3A - 2I \\
 A^4 &= 4A^2 + I - 4A = 4(2A - I) - 4A + I \\
 &= 4(2A - I) - 3A = 5A - 4I \\
 (A^5)^3 &= (5A - 4I)^3 \\
 &= 125A^3 - 3 \times 25A^2(4) + 3(5A)(4^2) - 64I \\
 &= 125(3A - 2I) - 300(2A - I) + 240A - 64I \\
 &= A(375 - 600 + 240) + I(-250 + 300 - 64) \\
 &= 15A - 14I \\
 \Rightarrow A^{15} + B &= 15A - 14I + B
 \end{aligned}$$

$$\begin{aligned}
 &= 4A - 3I \\
 A^5 &= 4A^2 - 3A \\
 &= \begin{bmatrix} 45 & -60 \\ 15 & -15 \end{bmatrix} + \begin{bmatrix} -14 & 0 \\ 0 & -14 \end{bmatrix} + \begin{bmatrix} 23 & 49 \\ 45 & 21 \end{bmatrix} \\
 &= \begin{bmatrix} 54 & -11 \\ 60 & -8 \end{bmatrix} \Rightarrow (A^{15} + B) \begin{bmatrix} x \\ y \end{bmatrix} \\
 \Rightarrow 54x - 11y &= 21 \quad \Rightarrow x = 1, y = 3 \\
 60x - 8y &= 36 \\
 \Rightarrow x + 2y &= 7
 \end{aligned}$$

□ □ □

Aakash
Medical|IIT-JEE|Foundations

Our Problem *Solvers* shine bright in **JEE 2025**

JEE (Advanced)

ADVAY
MAYANK
AIR 36

RUJUL
GARG
AIR 41

ARUSH
ANAND
AIR 64

SHREYAS
LOHIYA
AIR 6
Uttar Pradesh Topper
100th in Overall

KUSHAGRA
BAINGAHA
AIR 7
Uttar Pradesh Topper
100th in Overall

HARSSH
A GUPTA
AIR 15
Telangana Topper
100th in Overall

JEE (MAIN)