

JEE-Main-22-01-2026 (Memory Based)

[MORNING SHIFT]

Chemistry

Question: Arrange the given metal ions in number in increasing order of unpaired electrons in low spin complex formed by Mn^{3+} , Cr^{3+} , Fe^{3+} , Co^{3+}

Options:

- (a) $Co^{3+} < Fe^{3+} < Mn^{3+} < Cr^{3+}$
- (b) $Co^{3+} < Mn^{3+} < Fe^{3+} < Cr^{3+}$
- (c) $Cr^{3+} < Mn^{3+} < Cr^{3+} < Fe^{3+}$
- (d) $Cr^{3+} < Mn^{3+} < Co^{3+} < Fe^{3+}$

Answer: (a)

Question: Match the following and choose the correct option.

List- I	List-II
a) $[Ag(NH_3)_2]^+$	i) Fehling's solution
b) Zn-Hg/HCl	ii) Clemmenson's reduction
c) $NH_2 - NH_2/KOH$	iii) Tollen's reagent
d) Cu^{2+}/OH^-	iv) Wolff-Kishner reduction

Options:

- (a) a(i), b(ii), c(iii), d(iv)
- (b) a(iv), b(iii), c(ii), d(i)
- (c) a(iii), b(ii), c(iv), d(i)
- (d) a(i), b(ii), c(iv), d(iii)

Answer: (c)

Question: Find the energy to excite electron from first Bohr orbit of hydrogen atom to 2nd Bohr's orbit. (in eV)

Options:

- (a) 10.2 eV
- (b) 20.2 eV
- (c) 15.1 eV
- (d) 13.5 eV

Answer: (a)

Question: Statement-I: Sucrose is dextrorotatory and upon hydrolysis it becomes laevorotatory.

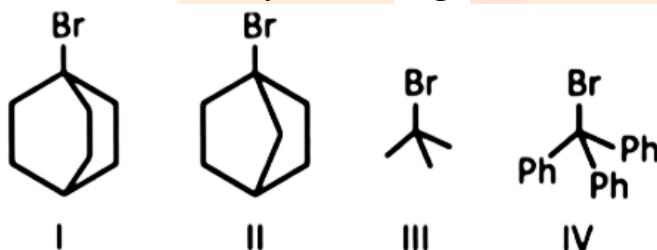
Statement-II: Sucrose on hydrolysis gives glucose and fructose such that laevorotation of glucose is more than dextrorotation of fructose.

Options:

- (a) Both Statement-I and Statement-II are correct
- (b) Both Statement-I and Statement-II are incorrect
- (c) Statement-I is correct, Statement-II is incorrect
- (d) Statement-II is correct, Statement-I is incorrect

Answer: (c)

Question: Which of the following is the correct order of the reactivity of given nucleophiles when treated with CH_3Br in methanol?



Options:

- (a) $\text{I}^- > \text{C}_2\text{H}_5\text{O}^- > \text{C}_6\text{H}_5\text{O}^- > \text{F}^-$
- (b) $\text{I}^- > \text{F}^- > \text{C}_2\text{H}_5\text{O}^- > \text{C}_6\text{H}_5\text{O}^-$
- (c) $\text{I}^- > \text{C}_2\text{H}_5\text{O}^- > \text{F}^- > \text{C}_6\text{H}_5\text{O}^-$
- (d) $\text{C}_6\text{H}_5\text{O}^- > \text{F}^- > \text{I}^- > \text{C}_2\text{H}_5\text{O}^-$

Answer: (a)

Question: Reactivity of following on the basis of $\text{S}_{\text{N}}1$ mechanism.

Options:

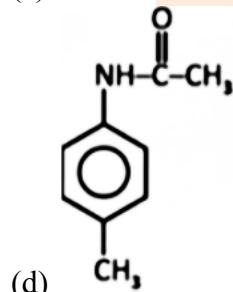
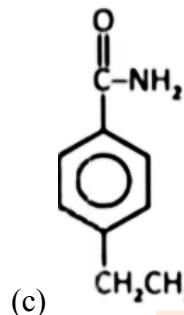
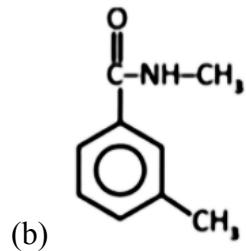
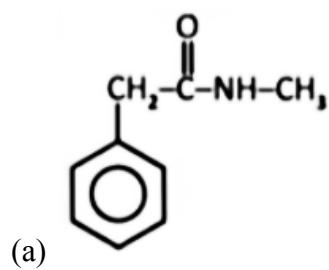
- (a) IV > III > I > II
- (b) II > IV > II > I
- (c) III > IV > I > II
- (d) IV > III > II > I

Answer: (a)

Question: Given below are two statements.

Statement-I: HX bond length is higher in HCl than HF .

Statement-II: The lowest boiling point in hydride of group 15 element is having covalency 4.





Options:

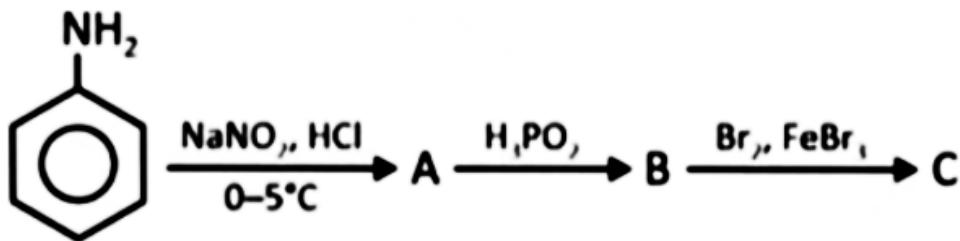
- (a) Both Statement-I and Statement-II is correct
- (b) Both Statement-I and Statement-II is incorrect
- (c) Statement-I is correct but statement-II is incorrect
- (d) Statement-I is incorrect but statement-II is correct

Answer: (c)

Question: A compound 'A' with molecular formula $\text{C}_9\text{H}_{11}\text{NO}$ reacts with Br_2/NaOH to give (X). (X) on reaction with NaNO_2 in dil. HCl gives compounds (Y). When (Y) is treated with CuCN , followed by hydrolysis gives (Z). The compound (A) on hydrolysis also gives compound (Z). Identify compound (A)

Options:

Answer: (c)


Question: Which of the following statements is correct regarding the nature and directive influence of $-\text{NO}_2$ group in nitration of benzene.

Options:

- (a) It is an activating group and ortho/para director
- (b) It is a deactivating group and ortho/para director
- (c) It is a deactivating group and meta director
- (d) It is an activating group and meta director

Answer: (c)

Question: Consider the following sequence of reaction and identify A, B and C respectively.

Options:

- (a) C_6H_5OH , C_6H_6 , $C_6H_4Br_2$
- (b) $C_6H_5N_2^+Cl^-$, C_6H_6 , C_6H_5Br
- (c) $C_6H_5NO_2$, C_6H_5OH , C_6H_4Br
- (d) C_6H_5Cl , C_6H_5OH , C_6H_6

Answer: (b)

Question: Statement-I: Ortho & Para nitro phenol can be differentiated by steam distillation.

Statement-II: Glycerol is separated from spent lie by distillation under reduced pressure

Statement-III: Chromatography separation based on differential affinities of components for a Stationary phase.

Statement IV: Aniline is commonly separated from a mixture of water by crystallization.

Select correct options

Options:

- (a) Only I & IV
- (b) Only I, II & III
- (c) Only I, III
- (d) All of these

Answer: (b)

Question: Given below are two statements

Statement-I: K_H is constant with change in concentration of gas till solution is dilute at given temperature.

Statement-II: According to Henry's Law, partial pressure of gas in vapour phase is inversely proportional to mole fraction of gas in solution.

Options:

- (a) Both Statement-I and Statement-II are correct
- (b) Both Statement-I and Statement-II are incorrect
- (c) Statement-I is correct, Statement-II is incorrect
- (d) Statement-I is incorrect and Statement-II is correct

Answer: (c)

Question: Consider a first order reaction:

$A \rightarrow \text{Products}$

3 different solutions are taken rate of reaction

Solution 1: 100 mL 10M 'A' - r_1

Solution 2: 200 mL 10M 'A' - r_2

Solution 3: 100 mL 10M 'A' + 100mL water - r_3

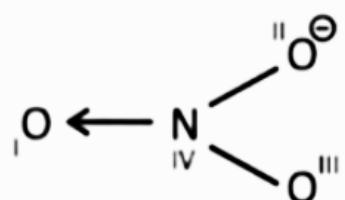
The correct order of the rate of reactions is,

Options:

- (a) $r_1 = r_2 = r_3$

(b) $r_1 = r_2 < r_3$
 (c) $r_1 = r_2 > r_3$
 (d) $r_1 < r_2 < r_3$

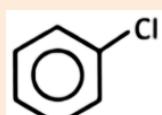
Answer: (c)

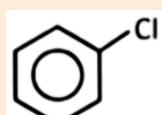

Question: Bohr's radius of H-atom is 2.12×10^{-10} m. Calculate the energy at this level.

Options:

(a) -5.44×10^{-19} J
 (b) -2.176×10^{-18} J
 (c) -54.4×10^{-19} J
 (d) -2.3×10^{-19} J

Answer: (a)

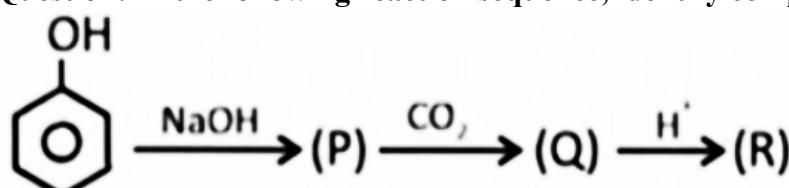

Question: Find the formal charge of N^{IV} and O^I, O^II, O^III



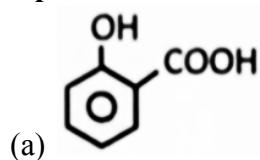
Options:

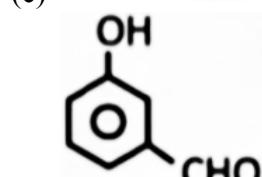
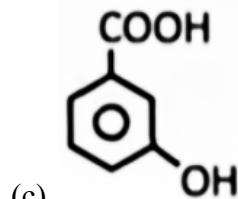
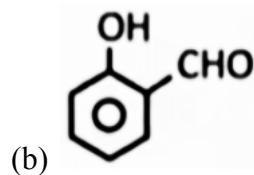
(a) 0, +1, -1, +2
 (b) +1, -1, -1, 0
 (c) -1, 0, +2, +1
 (d) +1, -1, 0, -1

Answer: (b)


Question: For , the incorrect statement is, 'P'

Options:


(a) 'P' is less reactive than benzyl chloride towards nucleophilic substitution reaction.
 (b) In 'P' C-Cl bond has partial double bond character
 (c) 'Cl' is an ortho-para directing group towards electrophilic aromatic substitution
 (d) 'P' can undergo nucleophilic substitution reaction at normal conditions




Answer: (d)

Question: In the following reaction sequence, identify compound (R)

Options:

Answer: (a)

Question: Which of the following statement is correct regarding element having atomic number 79.

Options:

- (a) It's first ionisation enthalpy is maximum in its group
- (b) It's first ionisation enthalpy is minimum in its group
- (c) It belongs to group 10 of periodic table
- (d) It belongs to 5th period of periodic table

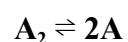
Answer: (a)

Question: An element from 1st transition series and another element of 3rd transition series (same group) do not liberate H₂ gas from dilute acids like HCl. Both form halides. The hybridisation state of metal ion halide respectively are

Options:

- (a) Both sp³
- (b) Both dsp²
- (c) sp³ and dsp²
- (d) dsp² and sp³

Answer: (c)


Question: Sodium extract of organic compound of 0.1 g is treated with chlorine water and CCl₄ which dissolves in organic solvent produce a violet colour upon treatment with AgNO₃ a yellow ppt of 0.12 g is produced. Calculate the percentage of Halide in organic compound.

Options:

- (a) 65
- (b) 91
- (c) 34
- (d) 80

Answer: (a)

Question: For the reaction given below at 25°C

Find $\ln K_p$

Given $(\Delta G_f^\circ)_A = -50.384 \text{ KJ/mol}$

Given $(\Delta G_f^\circ)A_2 = -100 \text{ KJ/mol}$

Options:

- (a) 0.43
- (b) 0.23
- (c) 0.31
- (d) 0.53

Answer: (c)

