

JEE-Main-22-01-2026 (Memory Based)
[EVENING SHIFT]
Physics

Question: Find the dimensions of the expression $\frac{\epsilon_0 E}{T}$, where ϵ_0 , E and T are permittivity, electric field and time.

Options:

- (a) MLA^2
- (b) $MA^{-1}L$
- (c) AL^{-2}
- (d) AL

Answer: (c)

Solution:

$$\left[\frac{\epsilon_0 E}{T} \right] = \frac{C^2}{Nm^2} \times \frac{N}{C \times T} = \frac{C}{m^2 T} = I L^{-2} = A L^{-2}$$

Question: In an open organ pipe 3rd and 6th harmonic frequency differ by 3200 Hz. Find the length of organ pipe (speed of sound = 320 m/s)

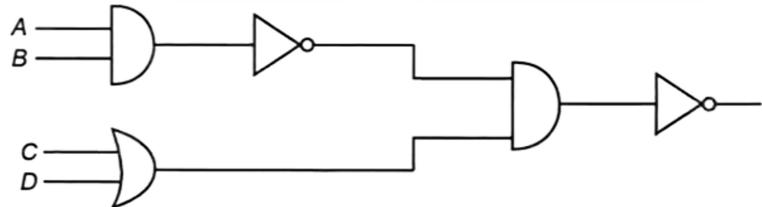
Options:

- (a) 5 cm
- (b) 10 cm
- (c) 15 cm
- (d) 20 cm

Answer: (c)

Solution:

$$f_0 = \frac{nV}{2L_0}$$

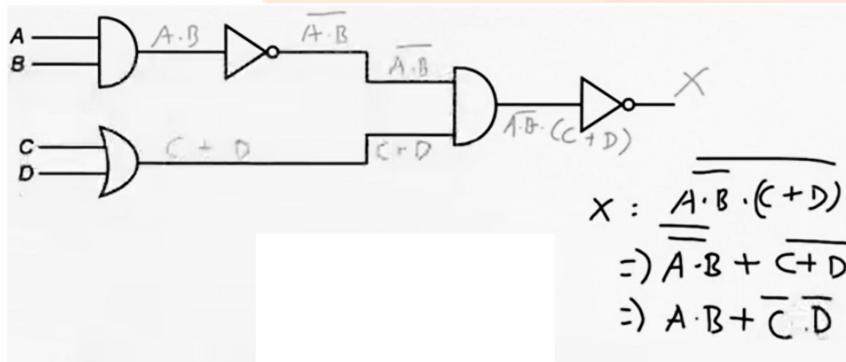

$$f_6 - f_3 = 3200 \text{ Hz}$$

$$\Rightarrow \frac{6V}{2L_0} - \frac{3V}{2L_0} = 3200$$

$$\Rightarrow \frac{3V}{2L_0} = 3200$$

$$\Rightarrow L_0 = \frac{1.5 \times 3200}{3200} = 0.15 \text{ m} = 15 \text{ cm}$$

Question: For the given logic gate find output function.



Options:

- (a) $\overline{A} \cdot \overline{B} + C + D$
- (b) $\overline{A} + \overline{B} + \overline{C} \cdot \overline{D}$
- (c) $AB + CD$
- (d) $AB + \overline{C} \cdot \overline{D}$

Answer: (d)

Solution:

Question: 3 small identical bubbles of water having same charge on each coalesce to form bigger bubble, Then the ratio of the potentials on one initial bubble & that on the resultant bigger bubble is:

Options:

- (a) $1 : 3^{2/3}$
 (b) $3^{2/3} : 1$
 (c) $1 : 2^{2/3}$
 (d) $1 : 3^{1/3}$

Answer: (a)

Solution:

$$V = \frac{Kq}{r}$$

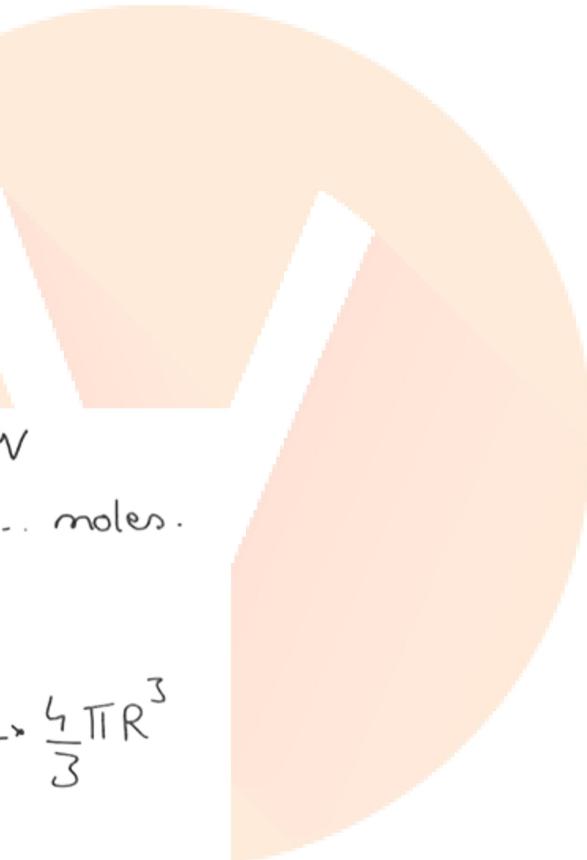
$$V_{\text{new}} = \frac{K \cdot 3q}{r\sqrt{3}}$$

$$= \frac{Kq}{r} \cdot \sqrt{3}$$

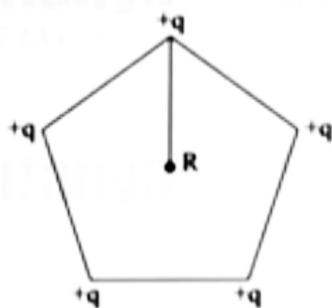
$$= V \cdot \sqrt{3}$$

$$\frac{V}{V_{\text{new}}} = \frac{1}{\sqrt{3}}$$

$$qV + qV + qV = 3qV$$


$$n + n + n \Rightarrow N \dots \text{moles.}$$

$$\frac{P \cdot V}{B \cdot T} \times 3 = \frac{P_{\text{new}} V_{\text{new}}}{B \cdot T}$$


$$\frac{4S}{9} \times \frac{4}{3} \pi r^3 \times 3 = \frac{4S}{R} \times \frac{4}{3} \pi R^3$$

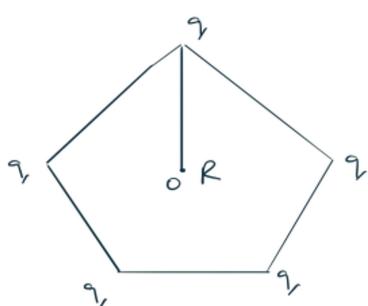
$$3r^2 = R^2$$

$$R = r\sqrt{3}$$

Question: Five positive charges each having charge q are placed at the vertices of a pentagon as shown in the figure. The electric potential (V) & the electric field (\vec{E}) at the center O of the pentagon due to the 5 positive charges are:-

Options:

(a) $V = 0, E = 0$


(b)

(c) $V = \frac{5a}{4\pi\epsilon_0 r}, \vec{E} = 0$

(d)

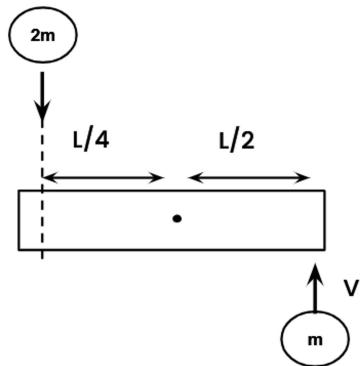
Answer: (c)

Solution:

Electric potential :-

Due to each charge $\frac{q}{4\pi\epsilon_0 r}$

Due to 5 charges $V_0 = \frac{5q}{4\pi\epsilon_0 r}$

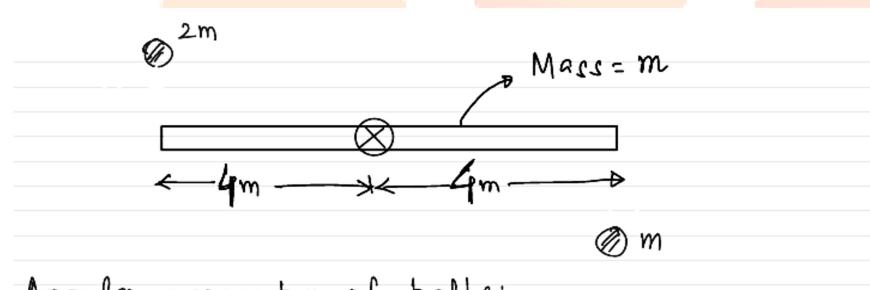

Electric field :-

As electric field is vector

Quantity .

$$E_0 = \vec{E}_1 + \vec{E}_2 + \vec{E}_3 + \vec{E}_4 + \vec{E}_5 = 0 //$$

Question: Two balls of mass $2m$ and m collides with rod of mass m and length L as shown balls stick to the rod after collision. Find $\frac{V}{\omega}$ if rod is hinged at centre. ($L = 8\text{ m}$)



Options:

- (a) $11/2$
- (b) $11/3$
- (c) $40/9$
- (d) $9/4$

Answer: (c)

Solution:

Angular momentum of balls:-

$$L_i = (2m V \times 4) + (m V \times 4) = 12mV$$

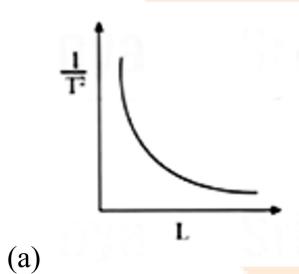
Angular momentum of rod + balls after collision:-

$$L_f = \left[(2m \times 16) + (m \times 16) + \frac{1}{12} \times m \times 64 \right] \omega$$

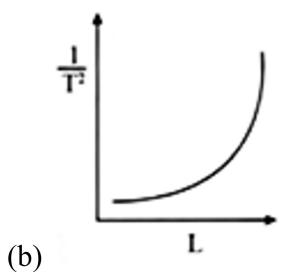
$$= \left[48 + \frac{16}{3} \right] \omega m$$

$$= \frac{160 \omega m}{3}$$

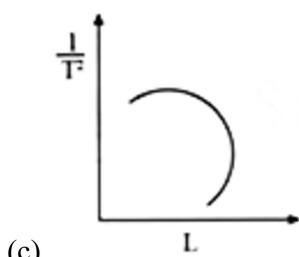
Angular momentum Conservation: -

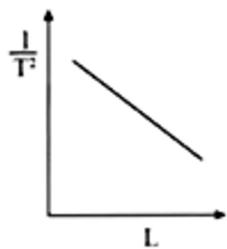

$$L_i = L_f$$

$$\Rightarrow 12mV = \frac{160 \omega m}{3}$$

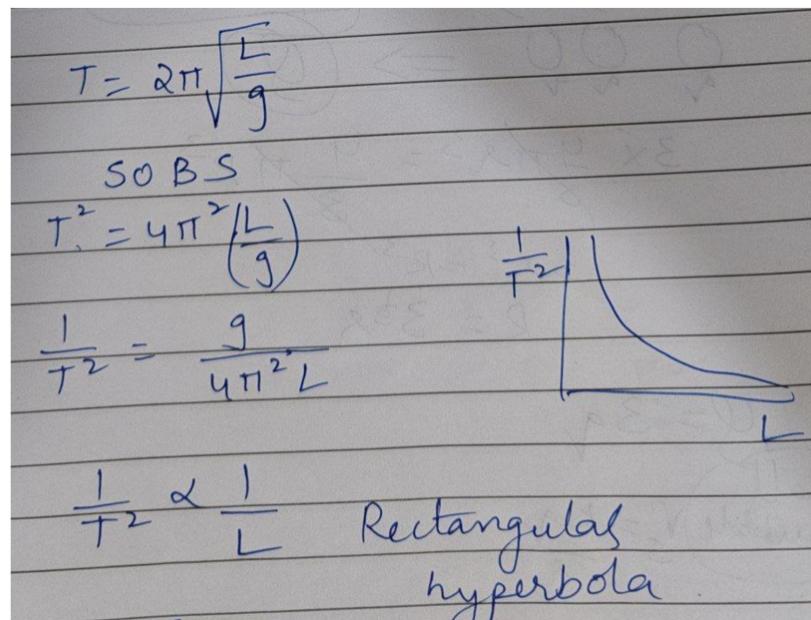

$$\Rightarrow \frac{V}{\omega} = \frac{160}{12 \times 3} = \frac{40}{9}$$

Question: Using a simple pendulum experiment g is determined by measuring its time period T . Which of the following plots represent correct relation b/w the pendulum length l & time period T .


Options:


(a)

(b)


(c)

(d)

Answer: (a)

Solution:

Question: A gas undergoes a process in which state variable changes from (1 atm, 60 ml, 27°C) to (P atm, 30 ml, 77°C) then P is

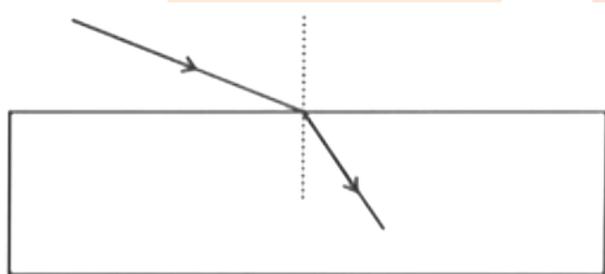
Options:

- (a) 3 atm
- (b) 5/4 atm
- (c) 7/3 atm
- (d) 4/3 atm

Answer: (c)

Solution:

Initial state	Final state
$P_1 = 1 \text{ atm}$	$P_2 = P \text{ atm}$
$V_1 = 60 \text{ ml}$	$V_2 = 30 \text{ ml}$
$T_1 = 27^\circ \text{C}$	$T_2 = 77^\circ \text{C}$

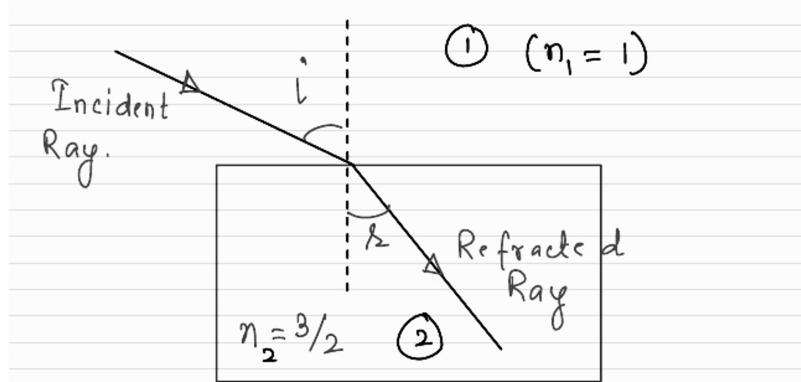

from ideal gas eqⁿ

$$PV = nRT$$

$$\frac{P_1 V_1}{T_1} = \frac{P_2 V_2}{T_2}$$

$$\frac{1 \times 60}{273 + 27} = \frac{P \times 30}{273 + 77} \Rightarrow P = 7/1 \text{ atm}$$

Question: A light ray incident on a slab of refractive index $\frac{3}{2}$. If 2 wavelength of refracted ray is 520 nm. Find wavelength of incident ray.



Options:

- (a) 460 nm
- (b) 780 nm
- (c) 360 nm
- (d) 560 nm

Answer: (b)

Solution:

$$\lambda_r = 520 \text{ nm} ; \lambda_i = ?$$

Snell's law:-

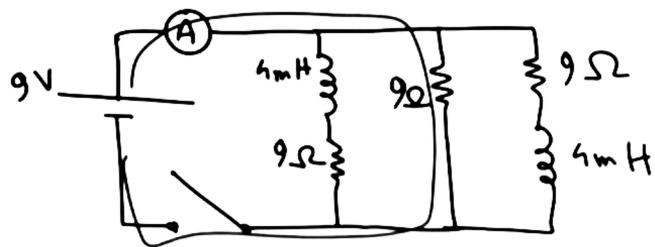
$$\frac{\sin i}{\sin r} = \frac{n_2}{n_1} = \frac{v_1}{v_2} = \frac{\lambda_i}{\lambda_r}$$

$$\therefore \frac{3/2}{1} = \frac{\lambda_i}{520}$$

$$\Rightarrow \lambda_i = 1.5 \times 520 = 780 \text{ nm}$$

Correct option (2)

Question: Fig shows a circuit that contains 3 resistances (9Ω each) & two inductors (4 mH). The reading of ammeter at the moment switch K is turned ON, is _____ A.



Options:

- (a) 3
- (b) 0
- (c) 2
- (d) 1

Answer: (d)

Solution:

$$9/9 = 1$$

Question: Which of the following is/are true for YDSE experiment?

- i. Fringe width increases if distance between slits is constant & wavelength increased.
- ii. Fringe width increases if distance between slits is constant & wavelength decreased.
- iii. Fringe width increases if distance between slits is increased & wavelength constant.
- iv. Fringe width increases if distance between slits is decreased & wavelength constant.

Options:

- (a) i, iii
- (b) i, iv
- (c) ii, iii
- (d) ii, iv

Answer: (b)

Solution:

$$B = \frac{\lambda D}{d}$$

(i) $B \propto \lambda$ if λ increases, B increases
 d constant.

~~(ii) $B \propto \lambda$ if λ decreases, B should decrease~~

~~(iii) $\frac{B}{d} \propto \frac{1}{\lambda}$, if d increases, B decreases.~~

(iv)
 reason: - $B \propto \frac{1}{d}$ d decrease B increase

option 2

Question: A pulley has mass 3 cm there are two blocks of masses m & $2M$. Find speed of 2 m when it descends by distance 3.6 meter .

Options:

- (a) 4
- (b) 2
- (c) 8
- (d) 12

Answer: (b)

Solution:

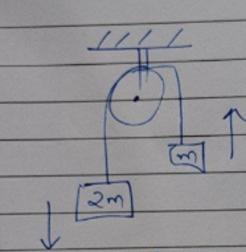


Diagram showing a pulley of mass $30m$ rotating clockwise. A string is attached to the pulley and hangs vertically, supporting a block of mass $2m$. The pulley has a radius R and moment of inertia $I = \frac{1}{2}MR^2 = \frac{15}{2}mR^2$. The angular velocity is ω .

$$\Delta PE = 2mgh - mgh$$

$$\Delta PE = mgh$$

$$\Delta KE = \frac{1}{2}mv^2 + \frac{1}{2}(2m)v^2 + \frac{1}{2}I\omega^2$$

$$= \frac{3}{2}mv^2 + \frac{1}{2}(15mR^2)\left(\frac{v}{R}\right)^2$$

$$= \frac{3}{2}mv^2 + \frac{15}{2}mv^2$$

$$\Delta KE = 9mv^2$$

$$mgh = 9mv^2$$

$$V = \sqrt{\frac{gh}{9}}$$

$$V = \sqrt{\frac{10 \times 3.6 \times 0.4}{9}}$$

$$V = 2\text{ m/s}$$

Question: The smallest wavelength of Lyman series is λ_0 . The difference between the largest wavelength of Paschen and Balmer series is nearly.

Options:

- (a) $\frac{464\lambda_0}{5}$
- (b) $\frac{566\lambda_0}{54}$
- (c) $\frac{468\lambda_0}{35}$
- (d) $534\lambda_0$

Answer: (c)

Solution:

Smallest wavelength of Lyman Series = λ_0

$$n_L = 1; n_H = \infty$$

$$\frac{1}{\lambda_0} = R \left[\frac{1}{1^2} - \frac{1}{\infty^2} \right] = R$$

$$\lambda_0 = \frac{1}{R} \quad \text{--- (1)}$$

for largest wavelength of Paschen Series:-

$$n_L = 3; n_H = 4$$

$$\frac{1}{\lambda_P} = R \left[\frac{1}{3^2} - \frac{1}{4^2} \right] = \frac{7R}{144}$$

for largest wavelength of Balmer Series:-

$$\frac{1}{\lambda_B} = R \left[\frac{1}{2^2} - \frac{1}{3^2} \right] = \frac{5R}{36}$$

$$\therefore \lambda_P - \lambda_B = \frac{144}{7R} - \frac{36}{5R} = \frac{468\lambda_0}{35}$$

Question: In case of capillary action if surface tension of liquid, radius of capillary and density of liquid decreases to 1% then percentage change in height of liquid level inside capillary:

Options:

- (a) 1% increase
- (b) 1% decrease
- (c) 2% increase
- (d) 2% decrease

Answer: (a)

Solution:

Capillary rise "h" in a capillary tube is:-

$$h_1 = \frac{2 \gamma_1 \cos \theta}{\rho g \delta_1}$$

$$\gamma_2 = \gamma_1 - 1\% \gamma_1 = \frac{99}{100} \gamma_1 = 0.99 \gamma_1$$

$$\rho_2 = 0.99 \rho_1$$

$$\delta_2 = 0.99 \delta_1$$

$$\therefore h_2 = \frac{2 \gamma_2 \cos \theta}{\rho_2 g \delta_2} = \frac{2 \times 0.99 \gamma_1 \cos \theta}{0.99 \rho_1 g (0.99 \delta_1)}$$

$$= \frac{1}{0.99} \times h_1$$

$$\frac{h_2}{h_1} = \frac{1}{0.99} = \frac{100}{99}$$

$$\therefore \text{Increase} = \left(\frac{h_2}{h_1} - 1 \right) \times 100 = \frac{100}{99} = 1.01\%$$

Correct option (1).

Question: Statement-1: Work done by \vec{F} from \vec{r}_1 to \vec{r}_2 is given as

$$W = - \int_{r_1}^{r_2} \vec{F} \cdot d\vec{r}, \quad \text{if } \vec{F} \text{ is conservative.}$$

Statement -1: There are ∞ ways through which we can go from \vec{r}_1 to \vec{r}_2 and work done for each are case will be different for conservative force.

Options:

- (a) Statement-1 is True, Statement-2 is True; Statement-2 is correct explanation of Statement-1.
- (b) Statement-1 is True, Statement-2 is True; Statement-2 is NOT correct explanation of Statement-1.
- (c) Statement-1 is True, Statement-2 is False.
- (d) Statement-1 and Statement-2 both are False.

Answer: (d)

Solution:

Statement 1 :- False

Work done is always

$$\int \vec{F} \cdot d\vec{r} \text{ always}$$

Statement 2 :- False

Work done by a conservative

force does not depends on path.

Question: A laser beam has intensity of $4.0 \times 10^{14} \text{ W/m}^2$. The amplitude of magnetic field associated with beam is _____ T.

Options:

- (a) 1.83
- (b) 5.5
- (c) 18.3
- (d) 2.0

Answer: (a)

Solution:

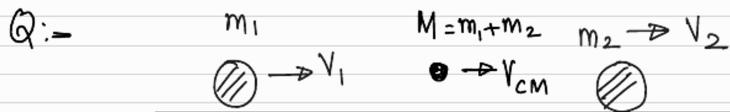
$$I = \frac{1}{2} \frac{B_0^2}{\mu_0} C$$

$$B_0 = \sqrt{\frac{2\mu_0 I}{C}} = \sqrt{\frac{2 \times 4\pi \times 10^{-7} \times 4 \times 10^{14}}{3 \times 10^8}}$$

Question: Statement-1: Kinetic energy of system

$$= \frac{1}{2} m_1 v_1^2 + \frac{1}{2} m_2 v_2^2 + \dots + \frac{1}{2} m_n v_n^2.$$

Statement-2: Kinetic energy of system = Kinetic energy of centre of mass + Kinetic energy with respect to centre of mass.


Options:

- (a) Statement I is true. Statement II is true
- (b) Statement I is true. Statement II is false
- (c) Statement I is false. Statement II is true

(d) Statement I is false. Statement II is false

Answer: (a)

Solution:

$$KE_{sys} = \frac{1}{2} m_1 v_1^2 + \frac{1}{2} m_2 v_2^2 \quad \text{--- (1)}$$

$$\begin{aligned} KE_{CM} &= \frac{1}{2} M V_{CM}^2 = \frac{1}{2} (m_1 + m_2) \left[\frac{m_1 v_1 + m_2 v_2}{m_1 + m_2} \right]^2 \\ &= \frac{1}{2} \frac{m_1^2 v_1^2 + m_2^2 v_2^2 + 2m_1 m_2 v_1 v_2}{(m_1 + m_2)} \quad \text{--- (2)} \end{aligned}$$

With respect to center of mass:-

$$KE_1 = \frac{1}{2} m_1 (v_1 - V_{CM})^2 = \frac{1}{2} m_1 \left[v_1 - \frac{m_1 v_1 + m_2 v_2}{m_1 + m_2} \right]^2$$

$$KE_2 = \frac{1}{2} m_2 (v_2 - V_{CM})^2 = \frac{1}{2} m_2 \left[v_2 - \frac{m_1 v_1 + m_2 v_2}{m_1 + m_2} \right]^2$$

$$KE_1 + KE_2 = \frac{1}{2} \frac{m_1 m_2}{m_1 + m_2} (v_1 - v_2)^2 \quad \text{--- (3)}$$

Adding (2) & (3) we get:-

$$KE_{sys} = KE_{CM} + KE \text{ of system with respect to COM.}$$

Correct option (1).

Question: A capacitor of capacitance $10 \mu F$ is connected with a battery $6 V$. Now battery is disconnected and another uncharged capacitor of capacitance $20 \mu F$ is connected to the capacitor. Find charge on $20 \mu F$ capacitor.

Options:

- (a) $\frac{30}{4} \mu C$
 (b) $10 \mu C$

- (c) $\frac{20}{3} \mu C$
 (d) $40 \mu C$

Answer: (d)

Solution:

$$\begin{aligned}
 Q_1 &= C_1 V \\
 &= 10 \times 6 \\
 (Q_1) &= 60 \mu C \\
 C_T &= C_1 + C_2 \\
 &= 10 + 20 \\
 (C_T) &= 30 \mu F \\
 V_{\text{common}} &= \frac{Q_T}{C_T} = \frac{60 \mu C}{30 \mu F} = 2 V \\
 Q_2 &= C_2 \times V_C \\
 &= 20 \mu F \times 2 \\
 (Q_2) &= 40 \mu C \\
 \text{option 4}
 \end{aligned}$$

Question: For the given statements below mark the correct option.

Statement-I: Work done by conservative force \vec{f} , from \vec{r}_1 to \vec{r}_2 is given by

$$W = - \int_{r_1}^{r_2} \vec{F} \cdot d\vec{r}$$

Statement-II: Work done by conservative force is path dependent.

Options:

- (a) Statement-I and statement-II is true
 (b) Statement-I is false and statement-II is true
 (c) Statement-I is true and statement-II is false
 (d) Statement-I and statement-II is false

Answer: (d)

Solution:

Question: Electromagnetic wave with intensity $I = 4 \times 10^{14}$ watt/m² is propagating in free space. Find the amplitude of magnetic field B_0 .
 (Use $c = 3 \times 10^8$ m/s, $\epsilon_0 = 8.85 \times 10^{-12}$ C²/N.m²).

Options:

- (a) 1.83 Tesla
- (b) 0.5 Tesla
- (c) 4.5 Tesla
- (d) 1 Tesla

Answer: (a)

Solution:

$$I = \frac{1}{2} \epsilon_0 E_0^2 c$$

$$c = \frac{E_0}{B_0} \Rightarrow E_0 = c B_0$$

$$\left| \begin{array}{l} I = \frac{1}{2} \epsilon_0 c^3 B_0^2 \\ B_0^2 = \frac{2I}{\epsilon_0 c} \end{array} \right| \left| \begin{array}{l} B_0^2 = \frac{2 \times 4 \times 10^{14}}{8.85 \times 10^{-12} \times (3 \times 10^8)^3} \\ B_0 = 1.83 \text{ T} \end{array} \right.$$

Question: A cylindrical conductor of Length 2 m and Area of cross section. 0.2 mm² carries an electric current of 1.6 A when its. ends are connected to 2V battery. Mobility of electrons in the conductor is $\alpha \times 10^{-3}$ m²/v - s. The value. of α is.

[Electron concentration = 5×10^{28} /m³ and Electron charge = 1.6×10^{-19} C].

Options:

- (a) 1
- (b) 4
- (c) 5
- (d) 10

Answer: (a)

Solution:

$$E = \frac{V}{L}$$

$$i = neAv_d$$

$$\Rightarrow v_d = \frac{i}{neA}$$

$$\mu = \frac{v_d}{E}$$

$$\mu = \frac{iL}{neAV}$$

$$= 1 \times 10^{-3}$$

$\alpha \times 10^{-3}$

Question: The wavelength of light when it is passing through water is 540 nm. The refractive index of water is $4/3$. The wavelength of the same light when it is passing through a transparent medium having refractive index of $3/2$ is.

Options:

- (a) 840 nm
- (b) 480 nm
- (c) 400 nm
- (d) 356 nm

Answer: (b)

Solution:

$$\lambda = \frac{\lambda_0}{n} \Rightarrow \lambda_0 = n \lambda$$

$$\frac{4}{3} \times 540 = \frac{3}{2} \times \lambda'$$

$$\Rightarrow \lambda' = \frac{4 \times 2}{3} \times 540 = 480$$

Question: S-I:- A satellite is moving around earth in the orbit very close to the earth's surface. The time period of the revolution depends on the density of the earth.

S-II:- The time period of the revolution of the satellite is the radius of the earth and g is the acceleration due to gravity.

Options:

- (a) S-I is true but S-II is false.
- (b) Both S-I and S-II are true.
- (c) S-I is false but S-II is true.
- (d) Both S-I and S-II are false.

Answer: (b)

Solution:

$$T = \frac{2\pi R^{3/2}}{\sqrt{GM}}$$

$$T = 2\pi \sqrt{\frac{R_e}{g}}, \text{ where } R_e \text{ is}$$

$$g = \frac{GM}{R_e^2}$$

