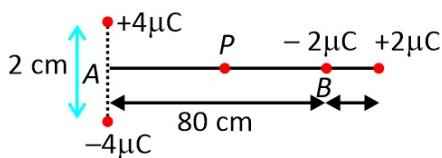


4. In equilateral triangular frame, then is current of $2A$. The side of frame is $4\sqrt{3}$ cm. Magnetic field at center C is

(1) $30\sqrt{3} \mu T$ (2) $10\sqrt{3} \mu T$
 (3) $3\sqrt{10} \mu T$ (4) $10\sqrt{10} \mu T$

Answer (1)



$$B = \frac{\mu_0 I \times 2 \times Cu 30^\circ}{4\pi \left\{ \frac{a}{2\sqrt{3}} \right\}}$$

$$B = \frac{\mu_0 \sqrt{3}}{2\pi \times 2 \times 10^{-2}} = 10^{-5};$$

$$B_{\text{net}} = 3\sqrt{3} \times 10^{-5}$$

5. Four charges are kept as shown in the figure. Find magnitude of electric field at point P. P is midpoint of line AB.

(1) 180 kV/m (2) $\frac{45\sqrt{5}}{8} \text{ kV/m}$
 (3) 270 kV/m (4) $60\sqrt{3} \text{ kV/m}$

Answer (2)

Sol. $P_1 = 8 \times 10^{-8}$ $P_2 = 2 \times 10^{-8}$

$$E_1 = \frac{kP_1}{r^3} = E_2$$

$$E_1 = \frac{9 \times 10^9 \times 8 \times 10^{-8}}{64 \times 10^3}, E_2 = \frac{9 \times 10^9 \times 2 \times 10^{-8}}{64 \times 10^3}$$

$$= \frac{9}{8} \times 10^4 = \frac{9}{16} \times 10^4$$

$$E = \frac{9}{16} \sqrt{5} \times 10^4 = \frac{45\sqrt{5}}{8} \times 10^3$$

6. One mole of diatomic gas is expanding isothermally from V to $2V$ at 27°C . If the magnitude of work done by the gas in this case is same as the work done in adiabatic process where initial temperature is 27°C and final temperature is $T^\circ\text{C}$. Find the value of T . [Use $\ln 2 = 0.7$]

(1) -37°C (2) -57°C
 (3) -35°C (4) 0°C

Answer (2)

Sol. $\Delta w_1 = NRT \ln(2) = 300R \ln(2)$

$$\Delta w_2 = N \frac{5}{2} R (T_i - T)$$

$$\Rightarrow \frac{5}{2} R (300 - T) = 300R \ln(2)$$

$$\Rightarrow 300 - T = 120 \ln(2) \quad [\ln 2 = 0.7]$$

$$\Rightarrow 300 - 84 = T = 216 \text{ K}$$

$$\Rightarrow T = -57^\circ\text{C}$$

7. Find the truth table for the given circuit.

A	B	Y
0	0	1
0	1	1
1	0	0
1	1	0

A	B	Y
0	0	0
0	1	1
1	0	1
1	1	1

A	B	Y
0	0	1
0	1	0
1	0	1
1	1	0

A	B	Y
0	0	1
0	1	0
1	0	0
1	1	1

Answer (1)

Sol. $\overline{A \cdot (A + B)}$

$$\overline{A} + \overline{(A + B)}$$

$$\overline{A} + \overline{A} \cdot \overline{B} = \overline{A}$$

Our Problem *Solvers* shine bright in **JEE 2025**

JEE (Advanced)

ADVAY
MAYANK
AIR 36

RUJUL
GARG
AIR 41

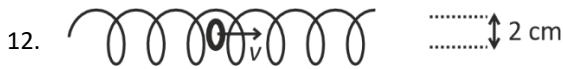
ARUSH
ANAND
AIR 64

and many more...

JEE (MAIN)

SHREYAS
LOHIYA
AIR 6

KUSHAGRA
BAINGAHA
AIR 7



HARSSH
A GUPTA
AIR 15

Telangana Topper
100th in Overall

In a long solenoid of cross-section radius of 2 cm and of 500/cm turns density. A ring moves with constant speed 10 cm/s with axis coinciding with axis of solenoid. The radius and resistance of ring is 1 cm and 10Ω . Find heat dissipated in ring while it transverses 10 cm of distance. The current in solenoid is $I = 10 \cos(100\pi t)$

(1) 300 μJ (2) 200 μJ
 (3) 700 μJ (4) 850 μJ

Answer (2)

Sol. $\phi = BA$

$$\phi = \mu_0 n i A$$

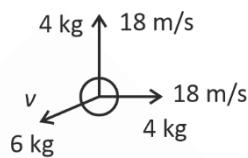
$$\begin{aligned} \varepsilon &= -\mu_0 n A \frac{di}{dt} = \mu_0 n A i_0 \omega \sin \omega t \\ \int P dt &= \int \frac{\mu_0^2 n^2 A^2 i_0^2 \omega^2}{R} \sin^2 \omega t dt \\ &= \frac{\mu_0^2 n^2 A^2 i_0^2 \omega^2}{R} \times \frac{1}{2} \\ &= \frac{(4\pi \times 10^{-7})^2 \times (50000)^2 (\pi \times 10^{-4})^2 100 \times 10^4 \times \pi^2}{10 \times 2} \\ &= \frac{16}{2} \times 10 \times 10^{-14} \times 25 \times 10^8 \times 10 \times 10^{-8} \times 10^6 \times \frac{10}{10} \\ &= \frac{400}{2} \times 10^{1-14+8+1-8+6} \\ &= \frac{400}{2} \times 10^{-6} \text{ J} \\ &= 200 \times 10^{-6} \end{aligned}$$

13. A small spherical ball of diameter 2 mm & density 10.5 gm/cc is dropped into a large column of viscous liquid. The density of liquid is 1.5 gm/cc and coefficient of viscosity is 10 poise calculate the terminal velocity ($g = 10 \text{ m/s}^2$).

(1) 1 cm/s (2) 2 cm/s
 (3) 3.5 cm/s (4) 1.5 cm/s

Answer (2)

$$\text{Sol. } V_t = \frac{2 r^2 g}{9 \eta} (\sigma - \rho)$$


$$= 20 \times 10^{-3} \text{ m/s} = 2 \times 10^{-2} \text{ m/s}$$

14. A mass of 14 kg is exploded into three fragments of 2 : 2 : 3 and both equal fragments fly off with same speed 18 m/s in mutually perpendicular direction. Then find the speed of the third fragment immediately after the explosion.

(1) $12\sqrt{2}$ (2) $6\sqrt{2}$
 (3) $8\sqrt{2}$ (4) $10\sqrt{2}$

Answer (1)

Sol.

$$\vec{P}_1 + \vec{P}_2 + \vec{P}_3 = 0$$

$$\vec{P}_1 + \vec{P}_2 = \vec{P}_3$$

$$\Rightarrow 6 \times v = \sqrt{2} \times 72$$

$$V = 12\sqrt{2} \text{ m/s}$$

15. Speed of sound in air at 0°C is v . Then at what temperature ($^\circ\text{C}$) the speed of sound becomes $2v$?

(1) 732 $^\circ\text{C}$ (2) 1092 $^\circ\text{C}$
 (3) 975 $^\circ\text{C}$ (4) 819 $^\circ\text{C}$

Answer (4)

$$\text{Sol. } v = \sqrt{CT}$$

$$\text{So } \frac{v}{v'} = \sqrt{\frac{T}{T'}}$$

$$\Rightarrow \frac{v}{v'} = \sqrt{\frac{273}{T}} = \frac{1}{2}$$

$$\Rightarrow T = 273 \times 4 = 1092 \text{ K}$$

$$\text{So, } T = 819^\circ\text{C}$$

Our Problem *Solvers* shine bright in **JEE 2025**

JEE (Advanced)

ADVAY
MAYANK
AIR 36

RUJUL
GARG
AIR 41

ARUSH
ANAND
AIR 64

and many more...

JEE (MAIN)

SHREYAS
LOHIYA
AIR 6
Uttar Pradesh Topper
100th in Overall

KUSHAGRA
BAINGAHA
AIR 7
Uttar Pradesh Topper
100th in Overall

HARSSH
A GUPTA
AIR 15
Telangana Topper
100th in Overall

16. There is electric field in space given as $\vec{E} = \frac{A}{r^2} \hat{r}$ (A is constant). There are two point charges of $-2 \mu\text{C}$ and $7 \mu\text{C}$ present at $(9, 0, 0)$ and $(-9, 0, 0)$ respectively. If electric potential energy of system is zero then A in SI units is

- $0.63 \times 10^{+3}$
- -0.325
- 1.26×10^4
- 0.325

Answer (3)

Sol. $\frac{Kq}{r^2} = \frac{A}{r^2}$

$$q = \frac{A}{k}$$

$$U = \sum \frac{kq_i q_j}{r_{ij}}$$

$$U = \frac{K(-14) \times 10^{-12}}{18} + K(5) \frac{A}{k \cdot g}$$

$$= \frac{9 \times 10^9 \times 10^{-12}}{18} + K(5) \frac{A}{k \cdot g}$$

$$U = -7 \times 10^{-3} + \frac{5A \times 10^{-6}}{9}$$

$$10^6 \times \frac{63}{5} \times 10^{-3} = A$$

$$12.6 \times 10^{+3} = A$$

17. Fission of single nucleus of U-235 liberates energy of 96 MeV. Energy released by fission of 47 gm of uranium is _____.

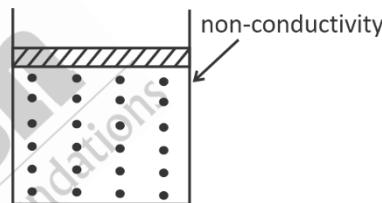
- $1.84 \times 10^{12} \text{ J}$
- $3.28 \times 10^9 \text{ J}$
- $1.42 \times 10^{15} \text{ J}$
- $3.21 \times 10^{14} \text{ J}$

Answer (1)

Sol. Moles = $\frac{47}{235} = \frac{1}{5}$ mole

$$N = \frac{6 \times 10^{23}}{5}$$

$$E = NE = \frac{6 \times 10^{23}}{5} \times 96 \times 10^6 \times 1.6 \times 10^{-19}$$


$$= \frac{6 \times 96 \times 1.6}{5} = 10^{10}$$

$$= 1.84 \times 10^{12} \text{ J}$$

18. 1 mole of gas is enclosed in a vertical cylinder and sealed with a massless frictionless piston as shown. On supplying 126 J of heat its temperature raised by 4°C . Find the height moved by piston due to the heat transfer. Internal energy of the gas is given by $U = 3nRT$ ($P = 10^5 \text{ N/m}^2$)

$$(R = 8.3 \text{ J/K})$$

$$(A_{\text{piston}} = 17 \text{ cm}^2)$$

- 12.50 cm

- 13.50 cm

- 14.50 cm

- 15.50 cm

Answer (4)

Sol. $\Delta Q = \Delta U + P\Delta V$

$$126 = 3 \times 8.3 \times 4 + 10^5 \times 16 \times 10^{-4} \times h$$

$$126 = 99.6 + 1.7 h \times 10^2$$

$$h = 15.53 \text{ cm}$$

19.

20.

Our Problem *Solvers* shine bright in **JEE 2025**

JEE (Advanced)

ADVAY
MAYANK
AIR 36

RUJUL
GARG
AIR 41

ARUSH
ANAND
AIR 64

and many more...

JEE (MAIN)

SHREYAS
LOHIYA
AIR 6
Uttar Pradesh Topper
100th in Overall

KUSHAGRA
BAINGAHA
AIR 7
Uttar Pradesh Topper
100th in Overall

HARSSH
A GUPTA
AIR 15
Telangana Topper
100th in Overall

SECTION - B

Numerical Value Type Questions: This section contains 5 Numerical based questions. The answer to each question should be rounded-off to the nearest integer.

21. If r = radius of ball

ρ = density of liquid

σ = density of ball

t = time

A = constant

η = viscosity

For the expression $t = A(\rho)^a (\sigma)^b r^c (\eta)^d$

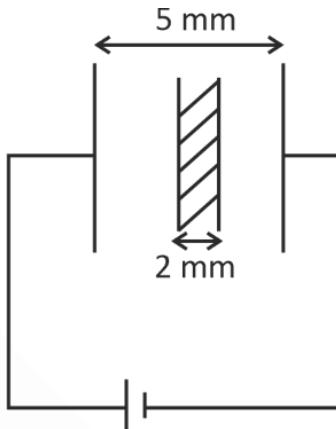
Then the value of $\frac{c-d}{a+b}$ is

Answer (3)

$$\text{Sol. } T = \left(\frac{M}{L^3} \right)^{a+b} (L)^c (ML^{-1}T^{-1})^d$$

Let $a+b = Z$

Then $Z+d=0 \Rightarrow Z=-d$


$c-3Z-d=0 \quad c-2Z=0 \Rightarrow c=2Z$

$-d=1; Z=1=(a+b)$

$c=2$

$$\text{So, } \frac{c-d}{(a+b)} = \frac{2+1}{1} = 3$$

22. An empty capacitor is charged with charge Q when attached with battery as shown. Now a mica sheet of 2 mm thickness is inserted and charge on capacitor $\frac{5}{4}a$ then the dielectric constant of mica is ____.

Answer (2)

$$\text{Sol. } \frac{Q_1}{Q_2} = \frac{C_1}{C_2} \quad \frac{Q}{5} = \frac{\frac{\epsilon_0 A}{d}}{\frac{\epsilon_0 A}{d-t+\frac{t}{K}}}$$

$$\Rightarrow \frac{4}{5} = \frac{3+\frac{2}{K}}{5} \Rightarrow K=2$$

23.

24.

25.

Our Problem Solvers shine bright in **JEE 2025**

JEE (Advanced)

ADVAY
MAYANK
AIR 36

RUJUL
GARG
AIR 41

ARUSH
ANAND
AIR 64

and many more...

JEE (MAIN)

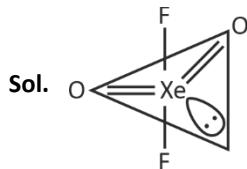
SHREYAS
LOHIYA
AIR 6
Uttar Pradesh Topper
100th in Overall

KUSHAGRA
BAINGAHA
AIR 7
Uttar Pradesh Topper
100th in Overall

HARSSH
A GUPTA
AIR 15
Telangana Topper
100th in Overall

CHEMISTRY

SECTION - A


Multiple Choice Questions: This section contains 20 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4), out of which **ONLY ONE** is correct.

Choose the correct answer :

1. For XeO_2F_2 , select the correct statement(s).
 - (A) It shows see-saw shape.
 - (B) Number of lone pair(s) of e^- on Xe is 1.
 - (C) $\angle \text{FXeF} = 180^\circ$ (approx.)
 - (D) It has tetrahedral shape.

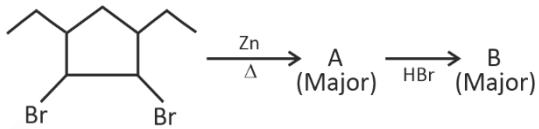
(1) (A), (C), (D) Only (2) (A), (B) only
 (3) (A), (B), (C) only (4) (B), (C), (D) only

Answer (3)

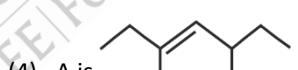
2. Statement I : Size of O^{2-} is smaller than F^- .

Statement II : Electronegativity of F is more than that of oxygen.

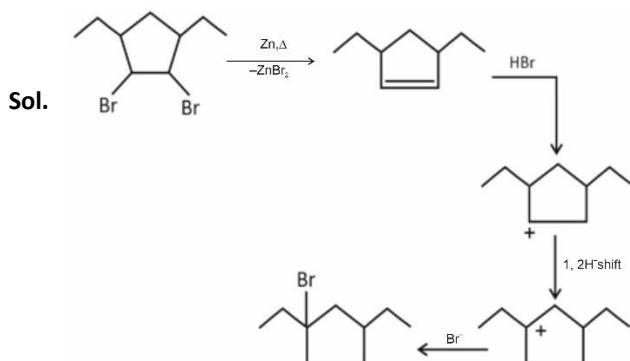
In the light of above statements, choose the correct option.


- (1) Both Statement I and Statement II are correct
- (2) Both Statement I and Statement II are incorrect
- (3) Statement I is correct but Statement II is incorrect
- (4) Statement I is incorrect but Statement II is correct

Answer (4)


Sol. Number of proton in O^{2-} is 8 and number of proton in F^- is 9 (both have $10e^-$). So, O^{2-} is larger than F^- . So, Statement I is false.

Statement II is true, F is smaller than O, so F is more electronegative than O.


3. Consider the reaction,

Choose the correct option,

- (1) A is
- (2) B is
- (3) B is
- (4) A is

Answer (3)

Our Problem *Solvers* shine bright in **JEE 2025**

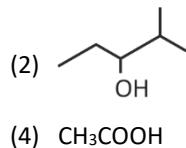
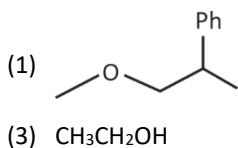
JEE (Advanced)

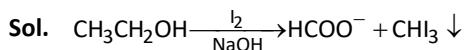
ADVAY
MAYANK
AIR 36

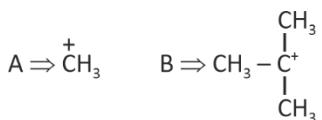
RUJUL
GARG
AIR 41

ARUSH
ANAND
AIR 64

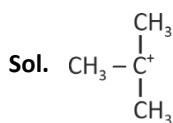
SHREYAS
LOHIYA
AIR 6



KUSHAGRA
BAINGAHA
AIR 7


HARSSH
A GUPTA
AIR 15


4. Which of the following molecule gives iodoform test.

Answer (3)

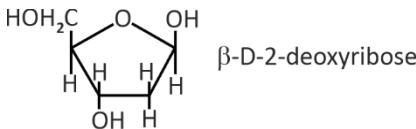


5. Consider the following intermediates.

(1) B is more stable than A as it has 9 α hydrogen
 (2) A is more stable than B as it has 3 α hydrogen
 (3) B is more stable than A due to resonance
 (4) A is more stable due to inductive effect

Answer (1)

\Rightarrow more stable as it has 9 α -H


\Rightarrow +I effect is more than B than A

6. DNA is optically active due to the presence of

(1) Purine nitrogenous base
 (2) Phosphate molecule
 (3) D-pentose sugar
 (4) L-pentose sugar

Answer (3)

Sol. DNA is optically active due to D-pentose sugar.

7. What is the oxidation state of chromium in the product when $\text{K}_2\text{Cr}_2\text{O}_7$ reacts with acidified KI

(1) +6 (2) +3
 (3) +4 (4) +5

Answer (2)

Sol. $\text{K}_2\text{Cr}_2\text{O}_7 + 6\text{KI} + 7\text{H}_2\text{SO}_4 \rightarrow \text{Cr}_2(\text{SO}_4)_3 + 4\text{K}_2\text{SO}_4 + 3\text{I}_2 + 7\text{H}_2\text{O}$
 Cr in product have +3 oxidation state.

8. 250 cc of $x \times 10^{-3}$ M acidified $\text{K}_2\text{Cr}_2\text{O}_7$ solution titrates 750 cc of 0.6 M Mohr's salt completely. Value of x is

(1) 200 (2) 600
 (3) 400 (4) 300

Answer (4)

Sol. meq of $\text{K}_2\text{Cr}_2\text{O}_7$ = meq of Mohr's salt
 $250 \times x \times 10^{-3} \times 6 = 750 \times 0.6 \times 1$
 $\Rightarrow x = 300$

9. Two metals with work function in ratio 1 : 2, are exposed with photons of energy 6 eV. If $\text{KE}_A : \text{KE}_B$ is 2.642 : 1, then value of ϕ_A and ϕ_B (in eV) are

(1) 2.3, 4.6 (2) 1.4, 2.8
 (3) 2.3, 3.6 (4) 3.2, 6.4

Answer (1)

Sol. Let $\phi_A = Y$, then ϕ_B will be 2Y
 Let $\text{KE}_B = x$, then $\text{KE}_A = 2.642x$
 $E_i(\text{eV}) = \phi(\text{eV}) + \text{KE}(\text{eV})$
 For metal A $\Rightarrow 6 = Y + 2.642x \dots (I)$
 For metal B $\Rightarrow 6 = 2Y + x \dots (II)$
 From Eq (I) and (II) $Y = 1.642x$
 Now put Y in Eq. (II)
 $6 = 2(1.642x) + x$
 on solving $x = 1.4$, $Y = 1.642 \times 1.4 = 2.3$
 So $\phi_A = Y = 2.3 \text{ eV}$, $\phi_B = 2Y = 4.6 \text{ eV}$

Our Problem Solvers shine bright in **JEE 2025**

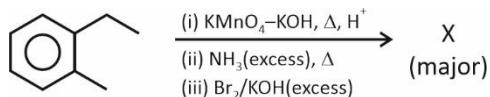
JEE (Advanced)

ADVAY
MAYANK
AIR 36

RUJUL
GARG
AIR 41

ARUSH
ANAND
AIR 64

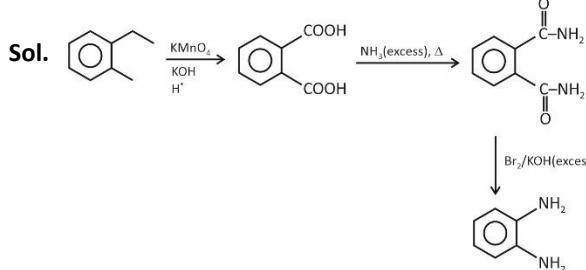
SHREYAS
LOHIYA
AIR 6


KUSHAGRA
BAINGAHA
AIR 7

HARSSH
A GUPTA
AIR 15

10. Consider the reaction sequence :

X is,

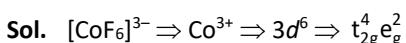

(1)

(2)

(3)

(4)

Answer (3)

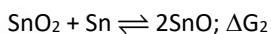
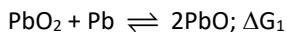

11. Consider the following statement about complexes and its hybridisation.

A. $[\text{CoF}_6]^{3-}$; outer orbital complex, sp^3d^2
 B. $[\text{Ni}(\text{CN})_4]^{2-}$; inner orbital complex; dsp^2
 C. $[\text{Co}(\text{NH}_3)_6]^{3+}$; inner orbital complex; d^2sp^3
 D. $[\text{FeF}_6]^{3-}$; outer orbital complex; sp^3d^2

Choose the correct statement.

(1) A, B, C and D
 (2) A, B and C only
 (3) A and B only
 (4) B and C only

Answer (1)



F^- is WFL $\Rightarrow sp^3d^2$, outer orbital complex.

$[\text{Ni}(\text{CN})_4]^{2-} \Rightarrow \text{Ni}^{2+}$ with $\text{CN}^- \Rightarrow$ SFL $\Rightarrow dsp^2$, inner orbital complex

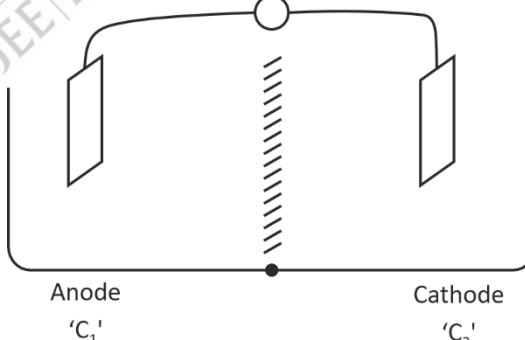
$[\text{Co}(\text{NH}_3)_6]^{3+} \Rightarrow \text{Co}^{3+} \Rightarrow \text{NH}_3$ (SFL) $\Rightarrow d^2sp^3$, inner orbital complex

$[\text{FeF}_6]^{3-} \Rightarrow \text{Fe}^{3+} \Rightarrow \text{F}^-$ (WFL) sp^3d^2 , outer orbital complex

12. Consider the following reactions

Select the correct option?

(1) $\Delta G_1 > 0, \Delta G_2 > 0$
 (2) $\Delta G_1 < 0, \Delta G_2 > 0$
 (3) $\Delta G_1 < 0, \Delta G_2 < 0$
 (4) $\Delta G_1 > 0, \Delta G_2 < 0$


Answer (2)

Sol. Due to inert pair effect, Pb(II) is more stable than Pb(IV)

$\therefore \text{PbO} > \text{PbO}_2$ (stability)

$\text{SnO}_2 > \text{SnO}$ (stability)

13. Consider a galvanic cell, made up of two H_2 -electrodes,

Both compartments contain the same metal electrodes. If concentrations of H^+ in anode and cathode are C_1 and C_2 respectively, then $E_{\text{cell}} > 0$ when, ($p_{\text{H}_2} = 1$ atm in both compartments)

Our Problem *Solvers* shine bright in **JEE 2025**

JEE (Advanced)

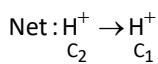
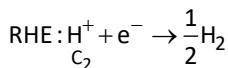
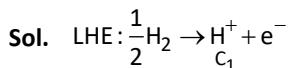
ADVAY
MAYANK
AIR 36

RUJUL
GARG
AIR 41

ARUSH
ANAND
AIR 64

SHREYAS
LOHIYA
AIR 6

KUSHAGRA
BAINGAHA
AIR 7

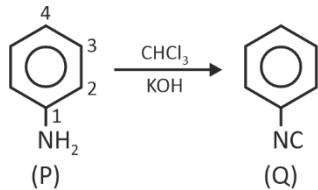
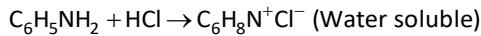
HARSSH
A GUPTA
AIR 15

(1) $C_2 < C_1$
 (2) $C_2 = C_1$
 (3) $C_2 > C_1$
 (4) $C_2 = 0.5 C_1$

Answer (3)

$$E = E^\circ - \frac{0.0591}{1} \ln \frac{C_1}{C_2}$$

$$E_{\text{cell}} = 0.0591 \ln \frac{C_2}{C_1}$$



$C_2 > C_1$ for $E_{\text{cell}} = +\text{ve.}$

14. A compound P with molecular formula C_6H_7N is sparingly soluble in water. However on reaction with HCl, it becomes soluble. On reaction with KOH + $CHCl_3$, it gives foul smelling compound Q. The number of different type(s) of H atoms present in P is

(1) 4
 (2) 5
 (3) 7
 (4) 8

Answer (1)

Sol. C_6H_7N D.U. = 4

Foul smell

Number of different type of H = 4

15. X & Y are elements from group 15. The difference in electronegativity values of X and phosphorus is more than difference in electronegativity of phosphorus and Y. Element X and Y respectively are

(1) N and As
 (2) As and Sb
 (3) As and N
 (4) As and Bi

Answer (1)

Sol. EN of N = 3.0

P = 2.1

As = 2.0

Sb = 1.9

Bi = 1.9

$\Delta EN(N \text{ and } P) = 0.9$

$\Delta EN(As \text{ and } P) = 0.1$

$\Delta EN(Sb \text{ and } P) = 0.2$

$\Delta EN(Bi \text{ and } P) = 0.2$

Our Problem *Solvers* shine bright in **JEE 2025**

JEE (Advanced)

ADVAY
MAYANK
AIR 36

RUJUL
GARG
AIR 41

ARUSH
ANAND
AIR 64

Gold Medalist

SHREYAS
LOHIYA
AIR 6

Uttar Pradesh Topper
100th in Overall

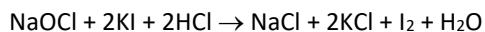
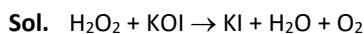
KUSHAGRA
BAINGAHA
AIR 7

Uttar Pradesh Topper
100th in Overall

HARSSH
A GUPTA
AIR 15

Telangana Topper
100th in Overall

16. Given below are two statements.



Statement I: Potassium hypoiodite (KOI) can act as a reducing agent in reaction with H_2O_2 .

Statement II: When NaOCl reacts with KI in acidic medium, NaOCl acts as oxidising agent.

In the light of above statements, choose the correct option.

- Both statement I and statement II are correct
- Both statement I and statement II are incorrect
- Statement I is correct but statement II is incorrect
- Statement I is incorrect but statement II is correct

Answer (1)

17.

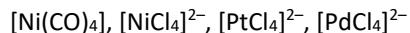
18.

19.

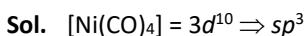
20.

SECTION - B

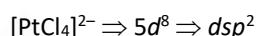
Numerical Value Type Questions: This section contains 5 Numerical based questions. The answer to each question should be rounded-off to the nearest integer.

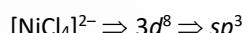

21. In estimation of chlorine by Carius method, 0.245 g organic compound gave 0.5453 g AgCl . Find percentage of chlorine in the organic compound

Answer (55)


Sol.
$$\% \text{ of Cl} = \frac{\frac{0.5453}{0.245} \times 35.5}{143.5} \times 100$$

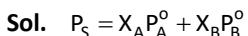
$$= 55.06\%$$


22. How many of the following complex(es) have unpaired electrons


Answer (1)

$$n = 0$$

$$n = 0$$


$$n = 2$$

$$n = 0$$

23. An ideal solution is formed by mixing 3 mole of A and 1 mole of B and the vapour pressure of solution is found to be 500 mm Hg. After further addition of 1 mole A, vapour pressure of solution becomes 520 mm Hg. Find P_A^0 .

Answer (600)

$$500 = \frac{3}{4} \times P_A^0 + \frac{1}{4} \times P_B^0$$

$$2000 = 3P_A^0 + P_B^0 \quad \dots(i)$$

Our Problem *Solvers* shine bright in **JEE 2025**

JEE (Advanced)

ADVAY
MAYANK
AIR 36

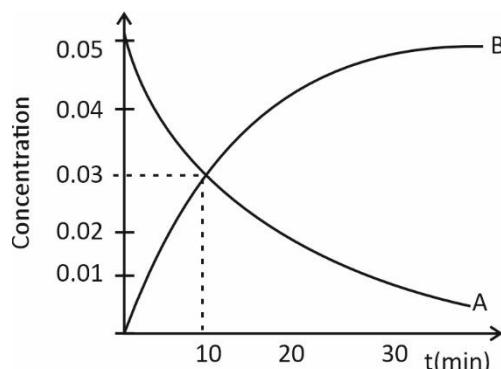
RUJUL
GARG
AIR 41

ARUSH
ANAND
AIR 64

SHREYAS
LOHIYA
AIR 6

KUSHAGRA
BAINGAHA
AIR 7

HARSSH
A GUPTA
AIR 15


After adding 1 mole of A,

$$520 = \frac{4}{5}P_A^0 + \frac{P_B^0}{5}$$

$$2600 = 4P_A^0 + P_B^0 \quad \dots \text{(ii)}$$

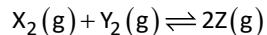
$$\text{(ii)} - \text{(i)} \Rightarrow 600 \text{ mm} = P_A^0$$

24. For a reaction $A \xrightarrow{\text{(g)}} nB$, a concentration vs. time curve is,

Find 10 n

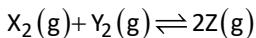
Answer (15)

Sol. For the reaction,


$$-\frac{dA}{dt} = +\frac{1}{n} \frac{dB}{dt}$$

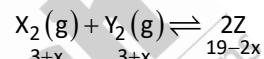
$$\frac{0.05 - 0.03}{10} = \frac{1}{n} \left(\frac{0.03 - 0}{10} \right)$$

$$\frac{0.02}{0.03} = \frac{1}{n}$$


$$n = 1.5$$

25. Consider the following reaction

3 mol of X_2 , 3 mol of Y_2 and 9 mol of Z are present at equilibrium and the volume of container is 1L. If 10 mol of Z is added at equilibrium, calculate the number of moles of Z at new equilibrium


Answer (15)

Sol. at eqⁿ 3 mol 3 mol 9 mol

$$K_{\text{eq}} = \frac{(9)^2}{3 \times 3} = \frac{9 \times 9}{3 \times 3} = 9$$

when 10 mol of Z is added reaction moves in backward direction

$$9 = \frac{(19 - 2x)^2}{(3+x)^2}$$

$$3 = \frac{19 - 2x}{3+x}$$

$$9 + 3x = 19 - 2x$$

$$5x = 10$$

$$x = \frac{10}{5} = 2$$

moles of Z at new equilibrium

$$= 19 - 2 \times 2$$

$$= 15$$

Our Problem *Solvers* shine bright in **JEE 2025**

JEE (Advanced)

ADVAY
MAYANK
AIR 36

RUJUL
GARG
AIR 41

ARUSH
ANAND
AIR 64

and many more...

JEE (MAIN)

SHREYAS
LOHIYA
AIR 6
Uttar Pradesh Topper
100th in Overall

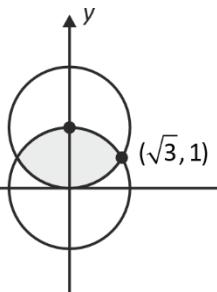
KUSHAGRA
BAINGAHA
AIR 7
Uttar Pradesh Topper
100th in Overall

HARSSH
A GUPTA
AIR 15
Telangana Topper
100th in Overall

and many more...

MATHEMATICS

SECTION - A


Multiple Choice Questions: This section contains 20 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4), out of which **ONLY ONE** is correct.

Choose the correct answer :

1. The area (in square units) between the curves $x^2 + y^2 = 4$ and $x^2 + (y - 2)^2 = 4$ is

(1) $\frac{8\pi}{3} - 2\sqrt{3}$ (2) $\frac{8\pi}{3} + \sqrt{3}$
 (3) $\frac{4\pi}{3} - 2\sqrt{3}$ (4) $\frac{4\pi}{3} + 2\sqrt{3}$

Answer (1)

Sol.

$$\begin{aligned}
 A &= 2 \int_0^{\sqrt{3}} \left(\sqrt{4-x^2} - (2 - \sqrt{4-x^2}) \right) dx \\
 &= 2 \left[\left| x\sqrt{4-x^2} + 4 \sin^{-1} \left(\frac{x}{2} \right) \right|_0^{\sqrt{3}} - 2(\sqrt{3}) \right] \\
 &= 4 \left(\frac{2\pi}{3} - \frac{\sqrt{3}}{2} \right) \text{ sq. units} = \frac{8\pi}{3}
 \end{aligned}$$

2. Number of ways to distribute 6 identical oranges among 4 persons such that each gets at least one orange is

(1) 8
 (2) 10
 (3) 12
 (4) 13

Answer (2)

$$\begin{aligned}
 \text{Sol. } x_1 + x_2 + x_3 + x_4 &= 6, & x_i &\geq 1 \\
 \Rightarrow x'_1 + x'_2 + x'_3 + x'_4 &= 2 & x'_i &\geq 0
 \end{aligned}$$

$$\Rightarrow \text{Number of ways} = {}^{2+4-1}C_{4-1}$$

$$= {}^5C_3 = 10 \text{ ways}$$

3. The minimum value of $\cos^2 \theta + 6\sin\theta\cos\theta + 3\sin^2 \theta + 3$

(1) -1 (2) 1
 (3) $5 + \sqrt{10}$ (4) $5 - \sqrt{10}$

Answer (4)

$$\text{Sol. } \cos^2 \theta + 6\sin\theta\cos\theta + 3\sin^2 \theta + 3$$

$$4 + 3\sin 2\theta + 2\sin^2 \theta$$

$$4 + 3\sin 2\theta + 1 - \cos 2\theta$$

$$E = 5 + 3\sin 2\theta - \cos 2\theta$$

$$E_{\min} = 5 - \sqrt{10}$$

4. Let $A = \{1, 2, 3, \dots, 9\}$; xRy iff $x - y$ is multiple of 3.

S_1 : Number of elements in R is 36

S_2 : R is equivalence relation

(1) S_1 & S_2 both are correct
 (2) S_1 is correct but S_2 is not correct
 (3) S_2 is correct but S_1 is not correct
 (4) S_1 & S_2 both are incorrect

Answer (3)

Sol. $S_1 : (x, y) \equiv (3k_1, k_2) \text{ OR } (3k_1 + 1, 3k_2 + 1) \text{ OR } (3k_1 + 2, 3k_2 + 2)$

$$= 3 \times 3 + 3 \times 3 + 3 \times 3$$

$$= 27 \text{ elements}$$

S_1 is incorrect.

R is reflexive, symmetric as well as transitive relation.

$$\text{as } (x, x) \in R \quad \forall x \in A$$

$$(x, y) \in R \rightarrow (y, x) \in R$$

$$(x, y) \in R \text{ and } (y, z) \in R \Rightarrow (x, z) \in R.$$

Our Problem *Solvers* shine bright in **JEE 2025**

JEE (Advanced)

ADVAY MAYANK
 AIR 36

RUJUL GARG
 AIR 41

ARUSH ANAND
 AIR 64

SHREYAS LOHIA
 AIR 6
 Uttar Pradesh Topper
 100th in Overall

KUSHAGRA BAINGAHA
 AIR 7
 Uttar Pradesh Topper
 100th in Overall

HARSH A GUPTA
 AIR 15
 Telangana Topper
 100th in Overall

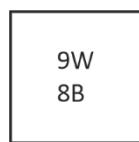
JEE (MAIN)

5. Let there are 2 bags A and B. Bag A has 9 white, 8 black balls and bag B has 6 white balls, 4 black balls. From a bag B, a ball is randomly selected and put into the bag A. Now, a ball is randomly selected from bag A. If the

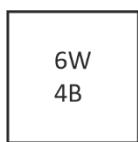
probability that selected ball is white is $\frac{p}{q}$, $\gcd(p, q)$

= 1, then $p + q$ is equal to

(1) 21


(2) 23

(3) 22


(4) 24

Answer (2)

Sol.

Bag A

Bag B

A : probability of getting white from bag A

B_w : probability of getting white from bag B

B_b : probability of getting black from bag B

$$P\left(\frac{A}{B_w \cup B_b}\right) = P(B_w)P\left(\frac{A}{B_w}\right) + P(B_b)P\left(\frac{A}{B_b}\right)$$

$$= \frac{6}{10} \times \frac{10}{18} + \frac{4}{10} \times \frac{9}{18}$$

$$= \frac{60+36}{180} = \frac{96}{180} = \frac{8}{15}$$

6. The value of $\int \frac{dx}{(4x+6)\sqrt{4x^2+12x+7}}$ is equal to

$$(1) \frac{\sqrt{2}}{8} \tan^{-1}\left(\frac{4x^2+12x+7}{\sqrt{2}}\right) + c$$

$$(2) \frac{\sqrt{2}}{8} \tan^{-1}(4x^2+12x+7) + c$$

$$(3) \frac{1}{2} \tan^{-1}\left(\frac{4x^2+12x+7}{2}\right) + c$$

$$(4) \frac{\sqrt{2}}{4} \tan^{-1}\left(\frac{4x^2+12x+7}{\sqrt{2}}\right) + c$$

Answer (1)

Sol. $I = \int \frac{(2x+3)}{2 \cdot (2x+3)^2 \sqrt{4x^2+12x+7}} dx$

$$\text{Let } 4x^2+12x+7 = t^2$$

$$\therefore (2x+3)dx = \frac{2tdt}{4}$$

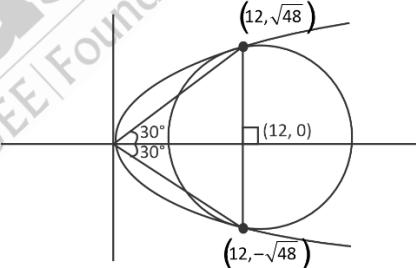
$$\therefore I = \int \frac{2t dt}{8 \cdot (4x^2+12x+9)t} = \int \frac{dt}{4(t^2+2)}$$

$$= \frac{1}{4} \frac{1}{\sqrt{2}} \tan^{-1}\left(\frac{t}{\sqrt{2}}\right)$$

$$\therefore I = \frac{\sqrt{2}}{8} \tan^{-1}\left(\frac{4x^2+12x+7}{\sqrt{2}}\right) + c$$

7. Let A and B are points on parabola $y^2 = 4x$ such that OAB is an equilateral triangle such that O is the vertex of parabola and AB is perpendicular to axis of parabola, then the minimum distance of circle as A and B as diametric points from the point O is

$$(1) 4(3+\sqrt{3})$$


$$(2) 4(3-\sqrt{3})$$

$$(3) 4(2-\sqrt{3})$$

$$(4) 4(2+\sqrt{3})$$

Answer (2)

Sol.

\Rightarrow circle is

$$(x-12)^2 + (y-\sqrt{48})(y+\sqrt{48}) = 0$$

$$\Rightarrow (x-12)^2 + y^2 = 48 \quad \Rightarrow \text{radius} = 4\sqrt{3}$$

Minimum distance is $12 - \sqrt{48}$

$$= 4(3-\sqrt{3})$$

Our Problem *Solvers* shine bright in **JEE 2025**

JEE (Advanced)

ADVAY MAYANK
AIR 36

RUJUL GARG
AIR 41

ARUSH ANAND
AIR 64

SHREYAS LOHIA
AIR 6
Uttar Pradesh Topper
100th in Overall

KUSHAGRA BAINGAHA
AIR 7
Uttar Pradesh Topper
100th in Overall

HARSH A GUPTA
AIR 15
Telangana Topper
100th in Overall

8. The mean and variance of following data is μ and 19, respectively.

Class interval	4 – 8	8 – 12	12 – 16	16 – 20
f (frequency)	3	λ	4	7

The value of $\lambda + \mu$ is

(1) 19 (2) 20
(3) 13 (4) 17

Answer (1)

$$\text{Sol. } \mu = \frac{3 \times 6 + \lambda \times 10 + 4 \times 14 + 7 \times 18}{14 + \lambda} = \frac{10\lambda + 200}{14 + \lambda}$$

$$19 = \sigma^2 = \frac{3 \times 6^2 + \lambda(10)^2 + 4(14)^2 + 7(18)^2}{14 + \lambda} - \left(\frac{10\lambda + 200}{14 + \lambda} \right)^2$$

$$\Rightarrow \lambda = 6$$

$$\mu = 13$$

$$\lambda + \mu = 19$$

9. If \vec{a}, \vec{b} and \vec{c} are such that $\vec{a} \times \vec{b} = 2(\vec{a} \times \vec{c})$ and angle between \vec{b} and \vec{c} is 60° , if $|\vec{a}| = 1, |\vec{b}| = 4, |\vec{c}| = 3$, then $|\vec{a} \cdot \vec{c}|$ is

(1) $\frac{3}{\sqrt{7}}$ (2) $\frac{5}{\sqrt{7}}$
(3) $\frac{6}{\sqrt{7}}$ (4) $\frac{9}{\sqrt{7}}$

Answer (3)

$$\text{Sol. } \because \vec{a} \times \vec{b} = 2\vec{a} \times \vec{c}$$

$$\therefore \vec{a} \times (\vec{b} - 2\vec{c}) = 0$$

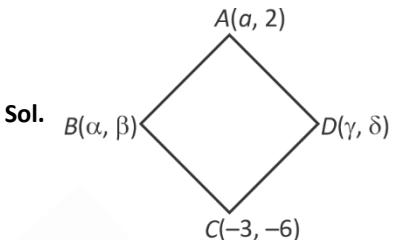
$$\therefore \vec{b} - 2\vec{c} = \lambda \vec{a} \quad \dots(1) \text{ (where } \lambda \in \mathbb{R} \text{)}$$

$$\text{and } \vec{b} \cdot \vec{c} = |\vec{b}| |\vec{c}| \cos 60^\circ = 6 \dots (2)$$

Squaring both sides of equation (1) we get :

$$|\vec{b}|^2 + 4|\vec{c}|^2 - 4\vec{b} \cdot \vec{c} = \lambda^2 |\vec{a}|^2$$

$$\therefore \lambda^2 = 16 + 36 - 24 = 28$$


from (1) : $\vec{b} \cdot \vec{c} - 2\vec{c} \cdot \vec{c} = \lambda \vec{a} \cdot \vec{c}$

$$\therefore |\vec{a} \cdot \vec{c}| = \frac{1}{\pm \sqrt{28}} (6 - 18) = \frac{12}{\sqrt{28}} = \frac{6}{\sqrt{7}}$$

10. Let A, B, C, D be rhombus with $A(a, 2), B(\alpha, \beta), C(-3, -6)$ and $D(\gamma, \delta)$, then the value of $|\alpha + \beta + \gamma + \delta|$ is if AC is parallel to $y = 2x + 14$ is

(1) 0 (2) 1
(3) 6 (4) 9

Answer (3)

$\therefore AC$ is parallel to $y = 2x + 14$

$$\Rightarrow \frac{8}{a+3} = 2 \Rightarrow a = 1$$

$$\text{Now } \frac{1-3}{2} = \frac{\alpha+\gamma}{2} \Rightarrow \alpha + \gamma = -2$$

$$\frac{2-6}{2} = \frac{\beta+\delta}{2} \Rightarrow \beta + \delta = -4$$

$$|\alpha + \beta + \gamma + \delta| = 6$$

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Our Problem *Solvers* shine bright in **JEE 2025**

JEE (Advanced)

ADVAY
MAYANK
AIR 36

RUJUL
GARG
AIR 41

ARUSH
ANAND
AIR 64

SHREYAS
LOHIYA
AIR 6
Uttar Pradesh Topper
100th in Overall

KUSHAGRA
BAINGAHA
AIR 7
Uttar Pradesh Topper
100th in Overall

HARSSH
A GUPTA
AIR 15
Telangana Topper
100th in Overall

SECTION - B

Numerical Value Type Questions: This section contains 5 Numerical based questions. The answer to each question should be rounded-off to the nearest integer.

21. If $A = \begin{bmatrix} 0 & 2 & -3 \\ -2 & 0 & -1 \\ 3 & 1 & 0 \end{bmatrix}$ and if $B(I - A) = (I + A)$, where I is identity matrix of order 3, then trace of (BB^T) is

Answer (03.00)

Sol. $B(I - A) = (I + A)$

Since A is skew symmetric matrix

$$\Rightarrow A^T = -A \text{ since, } B^T(I - A^T) = (I + A^T)$$

$$\Rightarrow B^T(I + A) = (I - A)$$

$$\Rightarrow BB^T(I + A) = B(I - A) = (I + A)$$

$$\Rightarrow BB^T(I + A)(I + A)^{-1} = (I + A)(I + A)^{-1}$$

$$= I_{3 \times 3}$$

$$\Rightarrow \text{Trace}(BB^T) = 3$$

22. $S = \text{No. of 4-digit numbers } abcd \text{ where product of digits is 20}$

$P = \text{No. of 5-digit number } abcde \text{ where product of digits is 20, then}$

$S + P$ is equal to

Answer (74)

Sol. $\{a, b, c, d\}$

$$\text{Digits : } 5, 4, 1, 1 \Rightarrow \text{No. of arrangement} \Rightarrow \frac{4!}{2!} = 12$$

$$5, 2, 2, 1 \Rightarrow \text{No. of arrangement} \Rightarrow \frac{4!}{2!} = 12$$

$$\Rightarrow S = 12 + 12 = 24$$

$$\{a, b, c, d, e\}$$

$$\text{Digits : } 5, 4, 1, 1, 1 \Rightarrow \text{No. of arrangement} \Rightarrow \frac{5!}{3!} = 20$$

$$5, 2, 2, 1, 1 \Rightarrow \text{No. of arrangement} \Rightarrow \frac{5!}{2!2!} = 30$$

$$\Rightarrow P = 20 + 30 = 50$$

$$S + P = 74$$

23. Let S be the set defined as

$$S = \left\{ x : \int_0^x t^2 \sin(t-x) dt = x^2 \text{ and } x \in [0, 1000] \right\}, \text{ then}$$

number of elements in S is

Answer (1)

Sol. Let $I = \int_0^x t^2 \sin(t-x) dt$

$$= \int_0^x (x-t)^2 \sin((x-t)-x) dt$$

$$= -x^2 \int_0^x (\sin t) dt + 2x \int_0^x t \sin t dt - \int_0^x t^2 \sin t dt$$

$$= -x^2(-\cos t) \Big|_0^x + 2x(\sin t - t \cos t) \Big|_0^x$$

$$- (2t \sin t + (2-t^2) \cos t) \Big|_0^x$$

$$= x^2 \cos x - x^2 + 2x(\sin x - x \cos x)$$

$$- 2x \sin x + (x^2 - 2) \cos x + 2$$

$$= x^2 \cos x - x^2 + 2x \sin x - 2x^2 \cos x - 2x \sin x$$

$$+ x^2 \cos x - 2 \cos x + 2$$

$$= -x^2 - 2 \cos x + 2$$

$$\Rightarrow -x^2 - 2 \cos x + 2 = x^2 \Rightarrow 2(1 - \cos x) = 2x^2$$

$$\Rightarrow 2 \sin^2 \frac{x}{2} = x^2 \Rightarrow x = 0 \text{ only solution}$$

24. The number of solutions of the equation

$$\log_{(x-3)}(2x^2 - 7x + 3) = 2 \log_{(2x-1)}(x-3)$$

Answer (1)

Sol. $\log_{(x-3)}(2x^2 - 7x + 3) = 2 \log_{(2x-1)}(x-3)$

or,

$$\log_{(x-3)}(x-3)(2x-1) = 2 \log_{(2x-1)}(x-3)$$

or,

$$1 + \log_{(x-3)}(2x-1) = 2 \log_{(2x-1)}(x-3)$$

Let $\log_{(x-3)}(2x-1) = y$

$$\therefore 1 + y = \frac{2}{y}$$

$$\text{Or, } y^2 + y - 2 = 0$$

$$\therefore \log_{(x-3)}(2x-1) = 1, -2$$

Our Problem *Solvers* shine bright in **JEE 2025**

JEE (Advanced)

**ADVAY
MAYANK**
AIR 36

**RUJUL
GARG**
AIR 41

**ARUSH
ANAND**
AIR 64

JEE (MAIN)

**SHREYAS
LOHIYA**
AIR 6
Uttar Pradesh Topper
100th in Overall

**KUSHAGRA
BAINGAHA**
AIR 7
Uttar Pradesh Topper
100th in Overall

**HARSSH
A GUPTA**
AIR 15
Telangana Topper
100th in Overall

$$\therefore 2x - 1 = x - 3$$

$\therefore x = -2$ not acceptable.

$$\text{and } 2x - 1 = (x - 3)^2$$

$$\therefore (2x - 1)(x - 3)^2 = 1$$

By solving we get :

$$(2x - 5)(x^2 - 4x + 2) = 0$$

$$\therefore x = \frac{5}{2}, 2 + \sqrt{2}, 2 - \sqrt{2}$$

Only $x = 2 + \sqrt{2}$ satisfy the equations

\therefore Number of solutions = 1.

25. If a sequence $\{a_n\}$ satisfy the relation $\sum_{k=1}^n a_k = \alpha n^2 + \beta n$, and $a_{10} = 56$ and $a_6 = 2a$, then $(\alpha + \beta)$ is equal to

Answer (20)

$$\text{Sol. } \sum_{k=1}^n a_k = \alpha n^2 + \beta n$$

$$a_{10} = 56 = a + 9d$$

$$a_6 = 2a_1 \Rightarrow a + 5d = 2a$$

$$= a + 5d$$

$$\Rightarrow 14d = 56 \Rightarrow d = 4 \text{ and } a = 20$$

$$\sum_{k=1}^n a_k = \frac{n}{2} (2 \times 20 + (n-1)4)$$

$$= 20n + 2(n)(n-1)$$

$$= 2n^2 + 18n$$

$$\Rightarrow \alpha = 2, \beta = 18 \Rightarrow \alpha + \beta = 20$$

Our Problem *Solvers* shine bright in **JEE 2025**

JEE (Advanced)

ADVAY
MAYANK
AIR 36

RUJUL
GARG
AIR 41

ARUSH
ANAND
AIR 64

SHREYAS
LOHIYA
AIR 6
Uttar Pradesh Topper
100
100
Overall

KUSHAGRA
BAINGAHA
AIR 7
Uttar Pradesh Topper
100
100
Overall

HARSSH
A GUPTA
AIR 15
Telangana Topper
100
100
Overall

JEE (MAIN)