

JEE-Main-24-01-2026 (Memory Based)

[MORNING SHIFT]

Physics

Question: A spring of stiffness $k = 15 \text{ N/m}$ is cut into a ratio of $3 : 1$. Find the spring constant of smaller length spring thus formed.

Options:

- (a) 15 N/m
- (b) 30 N/m
- (c) 45 N/m
- (d) 60 N/m

Answer: (d)

Solution:

Given: $k = 15 \text{ N/m}$ (as $k \propto \frac{1}{l}$)

$$\frac{k_1}{k_2} = \frac{l_2}{l_1}$$

$$\therefore k_1 : k_2 = 1 : 3$$

$$k_1 = 15 \text{ N/m}$$

$$k_2 = 3 \times 15 \text{ N/m} = 45 \text{ N/m}$$

$$\text{Equivalent } k = \frac{k_1 k_2}{k_1 + k_2}$$

$$15 = \frac{x \times 3x}{4x}$$

$$= \frac{3x^2}{4x}$$

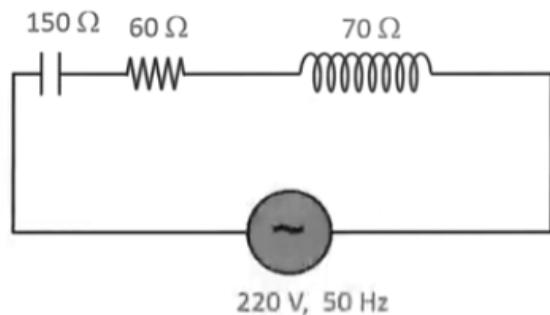
$$\frac{15 \times 4}{3} = x$$

$$20 = x$$

Hence k_2 is 45 N/m

Question: EM waves and their source are given

	Column-I		Column-II
a)	X-rays	p)	Hot bodies and molecules
b)	Infrared Rays	q)	Oscillatory current in Atenas
c)	Microwaves	r)	Magnetron
d)	Radio waves	s)	Fast moving electrons striking a metal plate


Options:

- (a) a-p, b-s, c-r, d-q
- (b) a-s, b-p, c-r, d-q
- (c) a-s, b-p, c-s, d-q
- (d) a-s, b-r, c-p, d-q

Answer: (b)

Solution:

Question: For the given as circuit, find the power factor.

Options:

- (a) $4/5$
- (b) $3/5$
- (c) $3/4$
- (d) $4/3$

Answer: (b)

Solution:

Solution:-

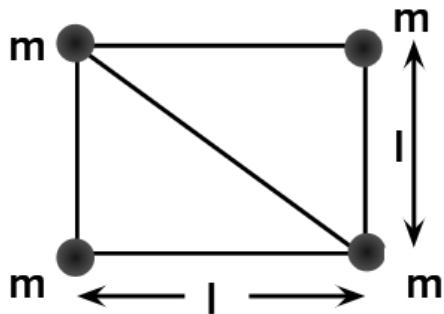
$$\text{Power factor, } \cos \phi = \frac{R}{Z} = \frac{150}{100} = \frac{3}{5}$$

$$Z = \sqrt{60^2 + (150 - 70)^2} \\ = 100$$

$$\boxed{\cos \phi = \frac{3}{5}} \quad (b)$$

Question: In H-like atom ratio of speed in two orbits is $3 : 2$, then ratio of energy is

Options:

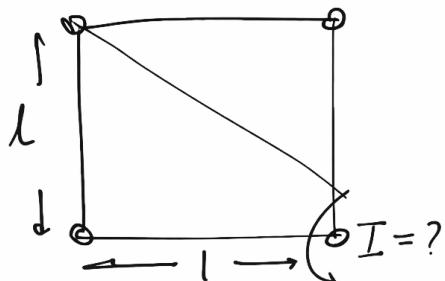

- (a) $2 : 3$
- (b) $9 : 4$
- (c) $2 : 1$
- (d) $5 : 3$

Answer: (b)

Solution:

$$\frac{U_1}{U_2} \propto \frac{Z_1}{n_1} / \frac{Z_2}{n_2} \quad \frac{E_1}{E_2} = \frac{\frac{Z_1^2}{n_1^2}}{\frac{Z_2^2}{n_2^2}}$$

Question: 4 particles each of mass m are present on the 4 radius of a sequence of length 'l'. Find the moment of inertia of the system about an axis passing through one of the vertices & perpendicular to the plane of the square.



Options:

- (a) ml^2
- (b) $3ml^2$
- (c) $4ml^2$
- (d) $6ml^2$

Answer: (c)

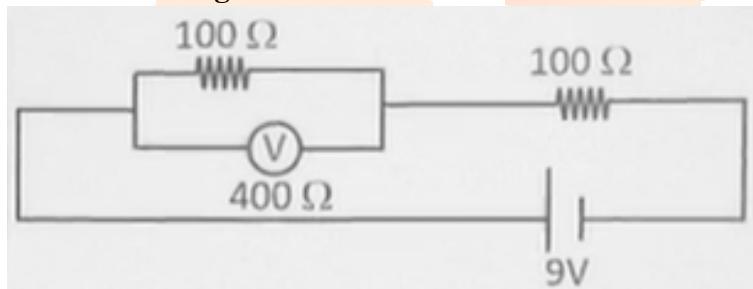
Solution:

$$\begin{aligned}
 I &= 0 + ml^2 + m(\sqrt{5}l)^2 + ml^2 \\
 &= 4ml^2
 \end{aligned}$$

Question: Find the de broglie wavelength for O_2 molecules. Who are maintained at a temperature of $27^\circ C$.

(Mass of $O_2 = 5.3 \times 10^{-26}$ kg)

Options:


- (a) 2.3 \AA
- (b) 6.1 \AA
- (c) 5.2 \AA
- (d) 8 \AA

Answer: (a)

Solution:

$$\begin{aligned}
 X &= \frac{3 \times T}{2} \\
 P^2 &= \frac{3 \times T}{2} \\
 P &= \sqrt{3 \times T} \\
 X &= \frac{h}{P} = \frac{h}{\sqrt{3 \times T}} \\
 &= 6.6 \times 10^{-34} \\
 &= \sqrt{3 \times 5.31 \times 10^{26} \times 1.4 \times 10^{-23} \times (27+27)} \\
 &= 6.6 \times 10^{-34} \\
 &= 9 \times 0.32
 \end{aligned}$$

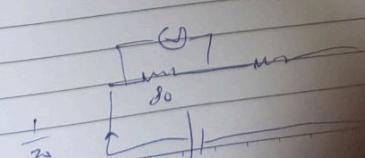
Question: A voltmeter of 400 W resistance is in parallel with 100 W resistor. And the combination is connected with 100 W resistor and a battery of 9 volt in series as shown. Find the reading of voltmeter.

Options:

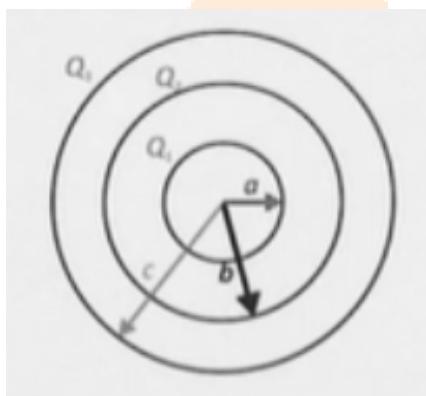
- (a) 5 volts
- (b) 3 volts
- (c) 4 volts
- (d) 6 volts

Answer: (c)

Solution:


Soln Total Resistance = $\frac{100 \times 100}{50} + 10$

$\therefore \frac{10000}{50} + 10$


$\therefore 200 + 10$

$i = \frac{V}{R} = \frac{9}{180} = \frac{1}{20}$

$V = R \times i = 80 \times \frac{1}{20} = 4V$

Question: Three uniformly concentric charged shells are kept as shown. Find potential of each shell.

Options:

(a) $V_A = \frac{kQ_1}{a} + \frac{kQ_2}{b} + \frac{kQ_3}{c}, V_B = \frac{k(Q_1 + Q_2 + Q_3)}{b}, V_C = \frac{k(Q_1 + Q_2 + Q_3)}{c}$

(b) $V_A = \frac{kQ_1}{a} + \frac{kQ_2}{b} + \frac{kQ_3}{c}, V_B = \frac{k(Q_1 + Q_2)}{b} + \frac{kQ_3}{c}, V_C = \frac{k(Q_1 + Q_2 + Q_3)}{c}$

(c) $V_A = \frac{kQ_1}{a} + \frac{k(Q_2 + Q_3)}{c}, V_B = \frac{k(Q_1 + Q_2)}{b} + \frac{kQ_3}{c}, V_C = \frac{k(Q_1 + Q_2 + Q_3)}{c}$

(d) $V_A = \frac{kQ_1}{a} + \frac{kQ_2}{b} + \frac{kQ_3}{c}, V_B = \frac{k(Q_1 + Q_2)}{a} + \frac{kQ_2}{b}, V_C = \frac{k(Q_1 + Q_2 + Q_3)}{c}$

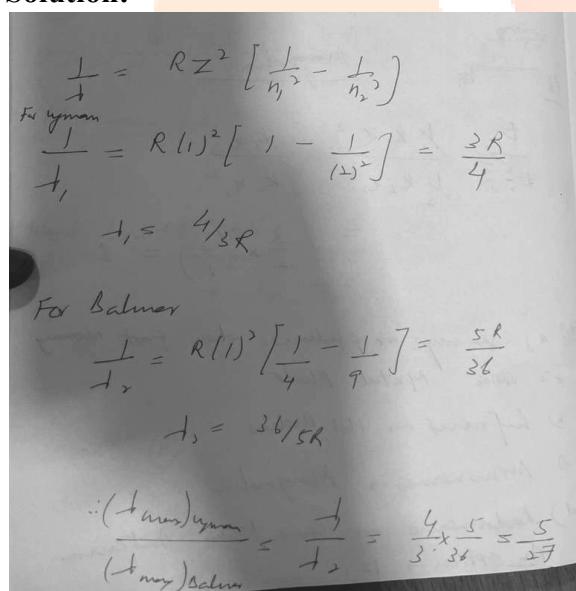
Answer: (b)

Solution:

$$V_a = \frac{k\phi_1}{a} + \frac{k\phi_2}{b} + \frac{k\phi_3}{c}$$

$$V_b = \frac{k\phi_1}{b} + \frac{k\phi_2}{b} + \frac{k\phi_3}{c}$$

$$V_c = \frac{k\phi_3}{c} + \frac{k\phi_1}{c} + \frac{k\phi_2}{c}$$


Question: Find the ratio of maximum wavelength in Lyman series to that of maximum wavelength in Balmer series in Hydrogen Spectrum?

Options:

- (a) 27/5
- (b) 5/27
- (c) 3/4
- (d) 9/5

Answer: (b)

Solution:

For Lyman series:

$$\frac{1}{\lambda_1} = R Z^2 \left[\frac{1}{n_1^2} - \frac{1}{n_2^2} \right]$$

$$\frac{1}{\lambda_1} = R (1)^2 \left[1 - \frac{1}{(2)^2} \right] = \frac{3R}{4}$$

$$\lambda_1 = \frac{4}{3} R$$

For Balmer series:

$$\frac{1}{\lambda_2} = R (1)^2 \left[\frac{1}{4} - \frac{1}{9} \right] = \frac{5R}{36}$$

$$\lambda_2 = \frac{36}{5} R$$

$\therefore \frac{(\lambda_{\text{max}})_{\text{Lyman}}}{(\lambda_{\text{max}})_{\text{Balmer}}} = \frac{1}{\lambda_2} = \frac{4}{3} \times \frac{5}{36} = \frac{5}{27}$

Question: A conducting rod of length 10 cm is dropped vertically from rest through a height 10 m in a region of uniform inward magnetic field of magnitude 0.5 T. The rod is always perpendicular to magnetic field. Neglect air resistance and electrical resistance. The magnitude of induced emf in the rod just before it reaches ground is

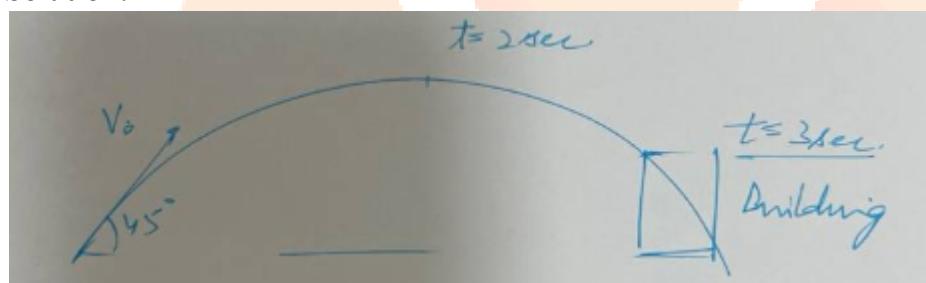
Options:

- (a) $0.25\sqrt{2}$ V
- (b) 0.5 V
- (c) $0.5\sqrt{2}$ V
- (d) $\sqrt{2}$ V

Answer: (c)

Solution:

$$\begin{aligned}
 v &= \sqrt{2gh} \\
 &= \sqrt{2 \times 10 \times 10} \\
 v &= 10\sqrt{2} \text{ m/s}
 \end{aligned}
 \quad
 \begin{aligned}
 e &= Blv \\
 &= 0.5 \times 10 \times 10^{-2} \times 10\sqrt{2} \\
 e &= 0.5\sqrt{2} v
 \end{aligned}$$

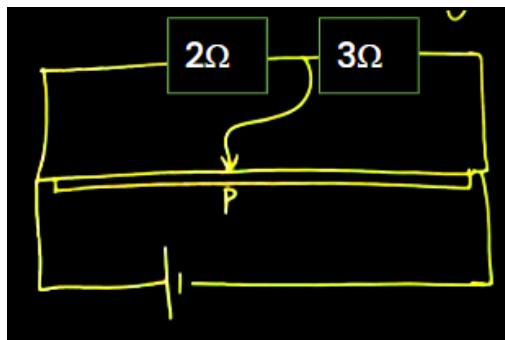

Question: A particle thrown at an angle of 45° . It reaches its highest point of trajectory after $t = 2$ sec. It hits a building located on the ground at some distance from its point of projection after 3 sec. Find the height of the building.

Options:

- (a) 30 m
- (b) 15 m
- (c) 45 m
- (d) None of these

Answer: (b)

Solution:

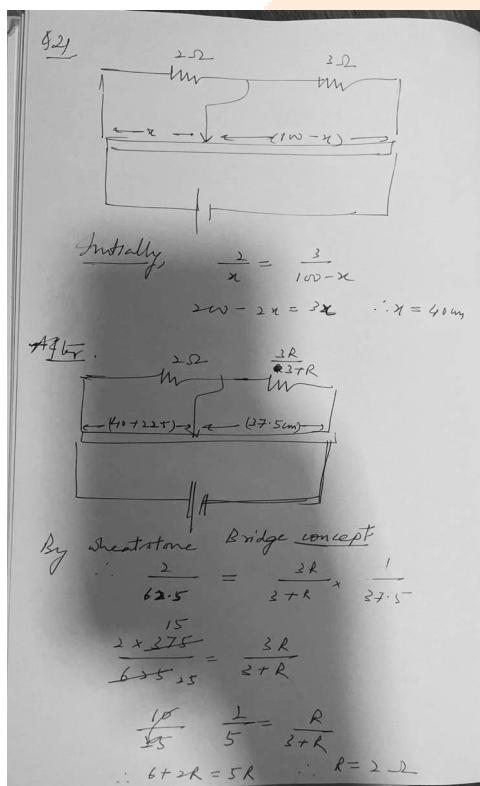

$$\begin{aligned}
 T &= \frac{2u \sin \theta}{g} \quad \therefore 4 = \frac{2u \times 1}{10} \frac{1}{\sqrt{2}} \\
 u &= 20\sqrt{2} \text{ m/s}
 \end{aligned}$$

The height of the particle after $t = 3$ sec.

$$s = ut + \frac{1}{2}at^2$$

$$\begin{aligned}
 h &= 20 \times 3 + \frac{1}{2} \times (-10) \times (3)^2 \\
 &= 60 - 45 = 15 \text{ m.}
 \end{aligned}$$

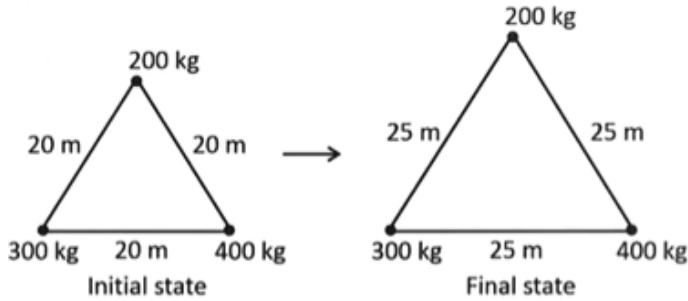
Question: Figure shows a meter bridge. Initially null points was achieved at P. When an unknown resistance R is connected in parallel with 3Ω then the point is shifted by 22.5 cm. Find the unknown R.



Options:

- (a) 2Ω
- (b) 3Ω
- (c) 2.5Ω
- (d) 5Ω

Answer: (a)


Solution:

Initially, $\frac{2}{x} = \frac{3}{100-x}$
 $2w - 2x = 3x \quad \therefore x = 40\text{ cm}$

After, $\frac{2}{(40+22.5)} = \frac{3R}{2+R}$
 $\frac{15}{62.5} = \frac{3R}{2+R}$
 $\frac{10}{5} = \frac{1}{2+R} \quad \therefore R = 2\Omega$
 $6+2R = 5R \quad \therefore R = 2\Omega$

Question: There are 3 particles present at the vertex of an equilateral triangle of length 20 cm. Find the work done to increase the distance between them from 20 cm to 25 cm.

Options:

- (a) $1.7342 \times 10^{-7} \text{ J}$
- (b) $1.6253 \times 10^{-7} \text{ J}$
- (c) $2.5232 \times 10^{-7} \text{ J}$
- (d) $6.6325 \times 10^{-7} \text{ J}$

Answer: (a)

Solution:

$$U_i = -\frac{G}{20} [200(300) + (300)(400) + (400)(200)]$$

$$U_f = -\frac{G}{25} [] = \frac{20}{25} U_i = \frac{4}{5} U_i$$

$$= \left(\frac{4}{5} - 1 \right) U_i$$

$$\Delta U = 1.7342 \times 10^{-7} \text{ J}$$

Question: Electric potential at a point is given as $E = Ar^3 + B$. Find charge in sphere of radius 1 m.

Options:

- (a) $-4\epsilon_0 A \pi$
- (b) $-8\epsilon_0 A \pi$
- (c) $-12\epsilon_0 \pi A$
- (d) $-16\epsilon_0 \pi A$

Answer: (c)

Solution:

Solution:

$$E = -\frac{dv}{dr} = -\frac{d}{dr}(Ar^3 + B)$$

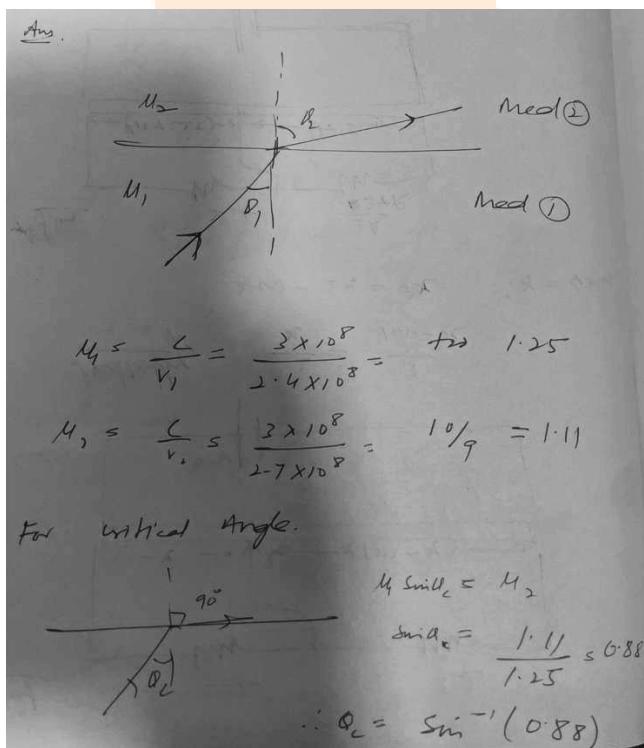
$$= -3Ar^2 \quad [r=1]$$

[$E = -3A$]

By Gauss law, $E \cdot 4\pi r^2 = \frac{Q}{\epsilon_0}$

$$-3A \cdot 4\pi (1)^2 = \frac{Q}{\epsilon_0}$$

[$-12\pi A \epsilon_0 = Q$ Ans]

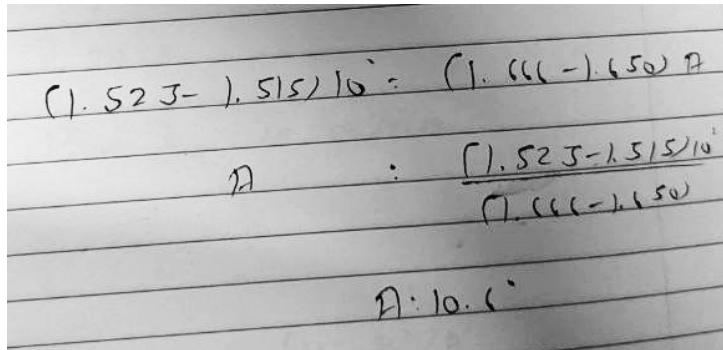

Question: A light wave is incident from medium 1 to medium 2 speed of light in medium 1 is $v_1 = 2.4 \times 10^8$ m/s, & speed in medium 2 is $v_2 = 2.7 \times 10^8$ m/s. Find the angle.

Options:

- (a) $\sin^{-1}(0.88)$
- (b) $\tan^{-1}(0.88)$
- (c) $\cos^{-1}(0.8)$
- (d) $\sec^{-1}(0.8)$

Answer: (a)

Solution:


Question: Two thin prisms are combined in such a way that there is deviation without dispersion. If $H_v = 1.523$ & $H_r = 1.515$ are refractive index for P_f and $H_v = 1.666$ & $H_r = 1.650$ for P_2 . Then find the angle of prism for P_2 . (Given $A_1 = 10^\circ$)

Options:

- (a) 5°
- (b) 7.8°
- (c) 10.5°
- (d) 20°

Answer: (c)

Solution:

$$(1.523 - 1.515)10 = (1.666 - 1.650) A$$

$$A = \frac{(1.523 - 1.515)10}{(1.666 - 1.650)}$$

$$A = 10.5^\circ$$

Question: Match the two Lists given below

	List-I		List-II
a)	Magnetic flux	1)	$M^1 L^2 T^{-2} A^{-2}$
b)	Magnetic permeability	2)	$M^1 L^2 T^{-2} A^{-1}$
c)	Magnetic induction	3)	$M^1 L^1 T^{-2} A^{-2}$
d)	Self induction	4)	$M^1 L^0 T^{-2} A^{-1}$

Options:

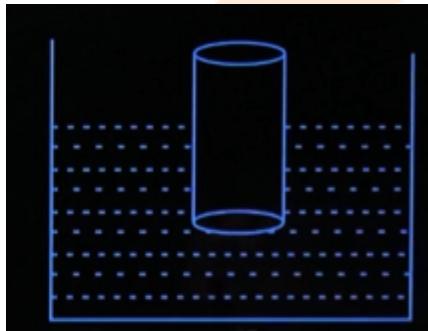
- (a) a-2, b-3, c-4, d-1
- (b) a-3, b-2, c-1, d-4
- (c) a-4, b-3, c-1, d-2
- (d) a-1, b-2, c-3, d-4

Answer: (a)

Solution:

$$B = \frac{F}{IL}$$

$$[B] = M T^{-2} A^{-1}$$


$$[BA] \cdot [\phi] =$$

$$= M L^2 T^{-2} A^{-1}$$

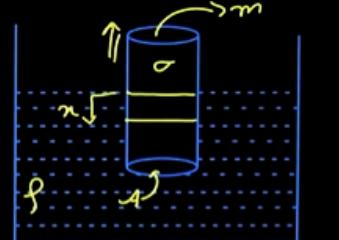
$$u_0 = \frac{BL}{I}$$

$$M L T^{-2} A^{-2}$$

Question: A cylinder of mass m , length l and area of cross section A is in equilibrium in liquid of density ρ . Find time period of small vertical oscillations.

Options:

$$(a) 2\pi \sqrt{\frac{mA}{\rho g}}$$


$$(b) 2\pi \sqrt{\frac{mg}{\rho A}}$$

$$(c) 2\pi \sqrt{\frac{m}{\rho A^2 g}}$$

$$(d) 2\pi \sqrt{\frac{m}{\rho A g}}$$

Answer: (d)

Solution:

$$- \tau A \rho g = m a$$

$$\omega^2 = \sqrt{\frac{\rho A g}{m}}$$

$$T = 2\pi \sqrt{\frac{m}{\rho A g}}$$

Question: Match the two Lists given below

	Column-I		Column-II
1)	Faraday's law of EMI	A)	$\oint \vec{B} \cdot d\vec{l} = \mu_0 I_{\text{enclosed}}$
2)	Ampere's circuital law	B)	$\Phi = \frac{q_{\text{in}}}{\epsilon_0}$
3)	Gauss law	C)	$\oint \vec{E} \cdot d\vec{l} = -\frac{d\Phi_B}{dt}$
4)	Maxwell's equations (Gauss's law for magnetism)	D)	$\nabla \cdot \vec{B} = 0$

Options:

- (a) 1-C, 2-A, 3-B, 4-D
- (b) 1-A, 2-C, 3-D, 4-B
- (c) 1-C, 2-B, 3-A, 4-D
- (d) 1-D, 2-A, 3-B, 4-C

Answer: (a)

Question: A dipole is placed in uniform magnetic field $B = 800$ gauss at an angle 30° then it experiences the torque of 16×10^{-3} N-m. Find the work done in slowly moving the dipole from stable equilibrium to unstable equilibrium.

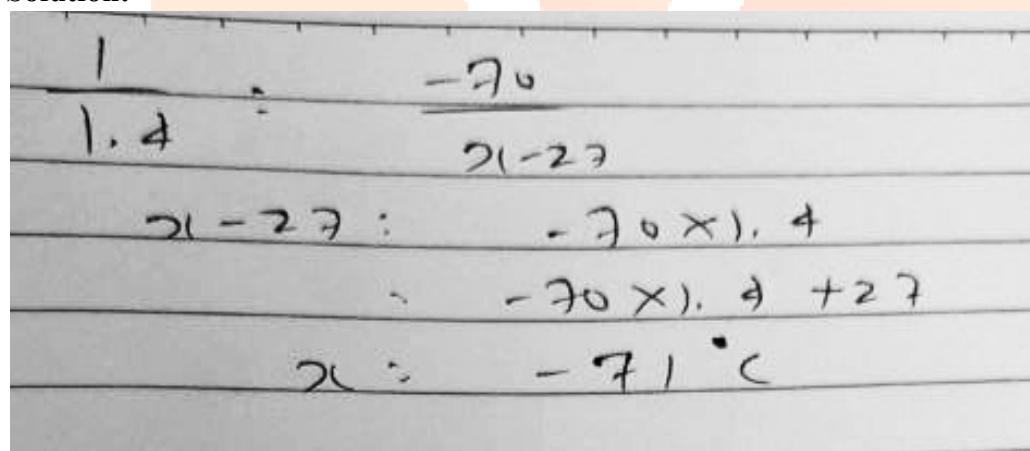
Options:

- (a) 64×10^{-3} J
- (b) 5×10^{-3} J
- (c) 24.5×10^{-3} J
- (d) 7.6×10^{-3} J

Answer: (a)

Solution:

$$\begin{array}{l}
 \xrightarrow{M} B \quad U = -MB \quad T = MB \sin 30^\circ \\
 16 \text{ mN} = \frac{MB}{2} - ① \\
 M \xleftarrow{\text{ } 30^\circ \text{ } } \xrightarrow{B} \\
 U_f = +MB \\
 \Delta U = WD_{ext} = 2MB = 64 \text{ mJ}
 \end{array}$$


Question: A brass rod is rigidly fixed and maintained at 27°C . If it cools down to -43°C then the tension in the rod is T_0 . Find at what temperature tension will be $1.4 T_0$.

Options:

- (a) -71°C
- (b) 108°C
- (c) 71°C
- (d) -108°C

Answer: (a)

Solution:

$$\begin{aligned}
 \frac{1}{1.4} &= \frac{-70}{21-27} \\
 21-27 &: -70 \times 1.4 \\
 & -70 \times 1.4 + 27 \\
 x &: -71^\circ\text{C}
 \end{aligned}$$

Question: In a screw gauge if 7th division is coinciding with the horizontal main scale when nothing is there than find the actual diameter of pen when main scale reading is 7 and circular division is 65th.

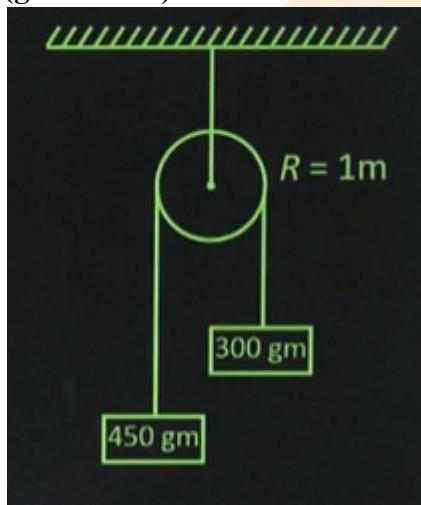
Options:

- (a) 7.58 mm
- (b) 7.72 mm
- (c) 7.65 mm
- (d) None of these

Answer: (a)

Solution:

Zero Error : $7 \times 0.01 \text{ mm}$


Actual Reading : $7 + 65 \times 0.01 - \text{Zero error}$

$= 7 + 0.65 - 0.07$

$= 7.58 \text{ mm}$

Question: When system is released from rest the heavier mass goes 81 cm in 9 sec, find rotational inertia.

($g = 10 \text{ m/s}^2$)

Options:

- (a) 74.25 kg-m^2
- (b) 100.25 kg-m^2
- (c) 50.25 kg-m^2
- (d) 25.25 kg-m^2

Answer: (a)

Solution:

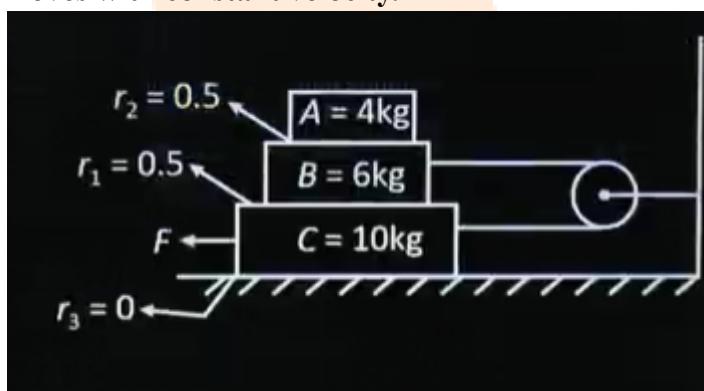
$$\frac{1}{2} \alpha t^2 = 0.81$$

$$\alpha = 0.02 \text{ m/s}^2$$

$$\alpha = \frac{(m_2 - m_1) g}{m_1 + m_2 + I/R^2}$$

$$0.02 = \frac{0.15 \times 10}{0.75 + I/(0.1)^2}$$

Question: Statement-1: Binding energy per nucleon always increase with mass number.

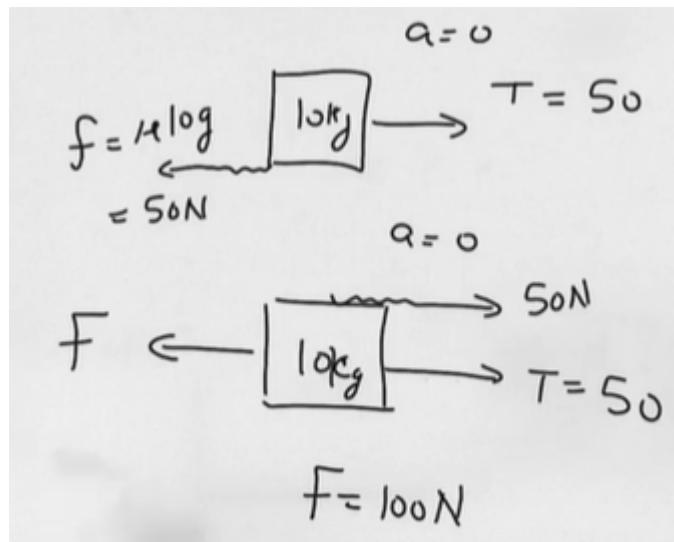

Statement-2: Binding energy per nucleon for smaller mass number always performs nucleon fusion.

Options:

- (a) Statement-1, true Statement-2, false
- (b) Statement-1, true Statement-2, true
- (c) Statement-1, false Statement-2, true
- (d) Statement-1, false Statement-2, false

Answer: (c)

Question: For the given arrangement find the value of F(in Newton) so that body c moves with constant velocity.



Options:

- (a) 100 N
- (b) 200 N
- (c) 300 N
- (d) 400 N

Answer: (100 N)

Solution:

Question: In YDSE the wavelengths of lights used are λ_1 and λ_2 . The separation between slits are d_1 and d_2 . Distance between slit and screen are D_1 and D_2 Respectively. If fringe

width obtained in both experiments are same then ratio of $\frac{D_1}{D_2}$ is

Options:

- (a) $\frac{\lambda_1 d_1}{\lambda_2 d_2}$
- (b) $\frac{\lambda_2 d_1}{\lambda_1 d_2}$
- (c) $\frac{\lambda_1 d_2}{\lambda_2 d_1}$
- (d) $\frac{\lambda_2 d_2}{\lambda_1 d_1}$

Answer: (b)

Solution:

Ans: $P_1 = P_2$

$$\frac{\lambda_1 D_1}{d_1} = \frac{\lambda_2 D_2}{d_2}$$

$$\boxed{\frac{D_1}{D_2} = \frac{\lambda_2 d_1}{\lambda_1 d_2}}$$

Question: In a cylindrical flux two lens of focal length 25 cm & 5 cm are arranged in such a way that the can object a very far placed object with a magnification of 5^k . Find value of k .

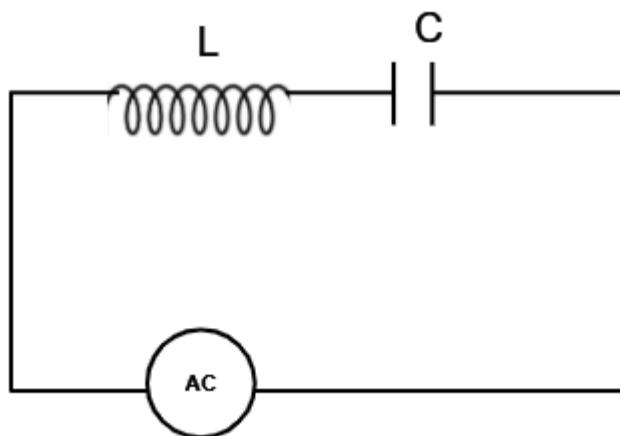
Options:

- (a) 1
- (b) 2
- (c) 3
- (d) -4

Answer: (a)

Solution:

It's a telescope cause we are seeing far placed object


$$m = \frac{s_o}{s_e}$$

$$5^k = 25$$

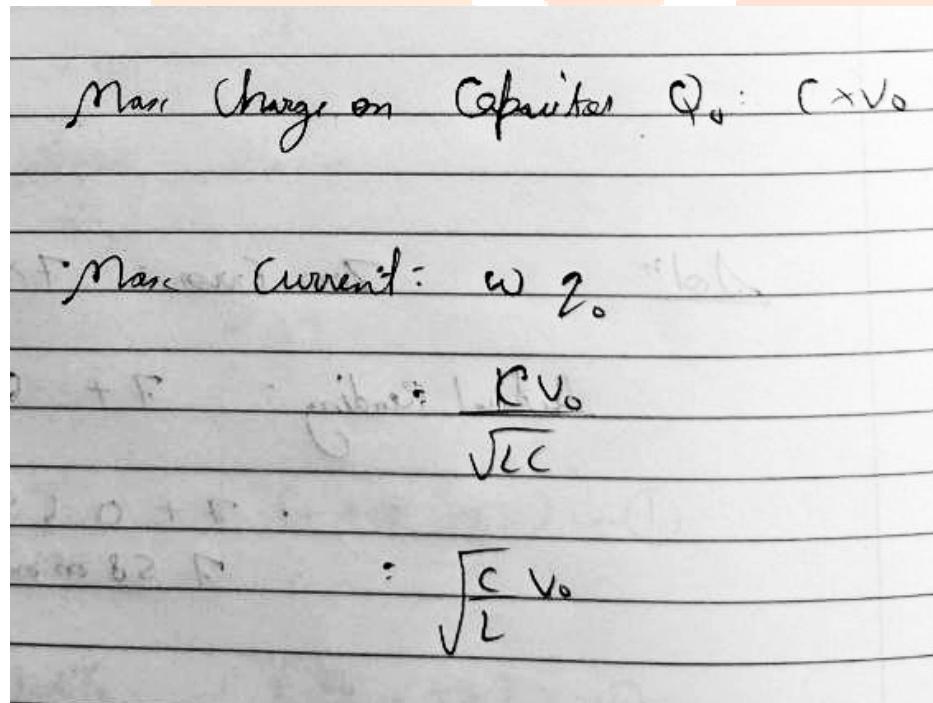
$$5^k = 5^1$$

$$k = 1$$

Question: In the given LC circuit, EMF of the circuit a is given by $E_0 \sin \omega t$. If capacitance of capacitor is C and inductance is L then find the value of max current.

Options:

(a) $V_0 \sqrt{\frac{C}{L}}$


(b) $\frac{V_0}{\sqrt{LC}}$

(c) $\frac{V_0}{\sqrt{C}}$

(d) None of these

Answer: (a)

Solution:

Max charge on Capacitor $Q_0: C \times V_0$

Max current: $w_2.$

$\frac{C V_0}{\sqrt{LC}}$

$\therefore \sqrt{\frac{C}{L}} V_0$

Question: Velocity of electron in n^{th} shell of a hydrogen like atom is $3 \times 10^5 \text{ m/s}$ and velocity of electron in m^{th} shell of that atom is $2.5 \times 10^5 \text{ m/s}$. Find ratio of radius of m^{th} shell to n^{th} shell.

Options:

- (a) 25/40
- (b) 25/36
- (c) 36/25
- (d) 36/35

Answer: (c)

Solution:

$$V_n = \frac{\sum V_0}{n} \quad \sigma_n = \sigma_0 \frac{n^2}{\sum}$$

$$\frac{V_n}{V_0} = \frac{m}{n} = \frac{6}{5}$$

$$\frac{\sigma_n}{\sigma_0} = \frac{m^2}{n^2} = \frac{36}{25}$$

Question: Four lengths l_1, l_2, l_3, l_4 are measured independently. These lengths are added to obtain total length, $L = l_1 + l_2 + l_3 + l_4$. Each length is measured with same absolute error Δl . Find $\Delta L/L$

Options:

- (a) $\frac{\Delta l}{l_1 + l_2 + l_3 + l_4}$
- (b) $\frac{4\Delta l}{l_1 + l_2 + l_3 + l_4}$
- (c) $\frac{\Delta l}{l_1 l_2 l_3 l_4}$
- (d) $\frac{\Delta l}{4(l_1 + l_2 + l_3 + l_4)}$

Answer: (b)

Solution:

$$\text{Ans} \quad \Delta L = \Delta l_1 + \Delta l_2 + \Delta l_3 + \Delta l_4$$

$$\Delta L = 4\Delta l$$

$$\therefore \frac{\Delta L}{L} = \frac{4\Delta l}{l_1 + l_2 + l_3 + l_4}$$

Question: The time period and length of the Pendulum is given as $T_1 = 25$, $T_2 = 2T$, $l_1 = 50$ cm. Find l_2 .

Options:

- (a) 100 cm

(b) 150 cm
 (c) 200 cm
 (d) 50 cm

Answer: (c)

Solution:

$$\text{Ans: } T = 2\pi \sqrt{\frac{l}{g}} \Rightarrow \frac{T_1}{T_2} = \sqrt{\frac{l_1}{l_2}}$$

$$\frac{1}{2} = \sqrt{\frac{50}{l_2}}$$

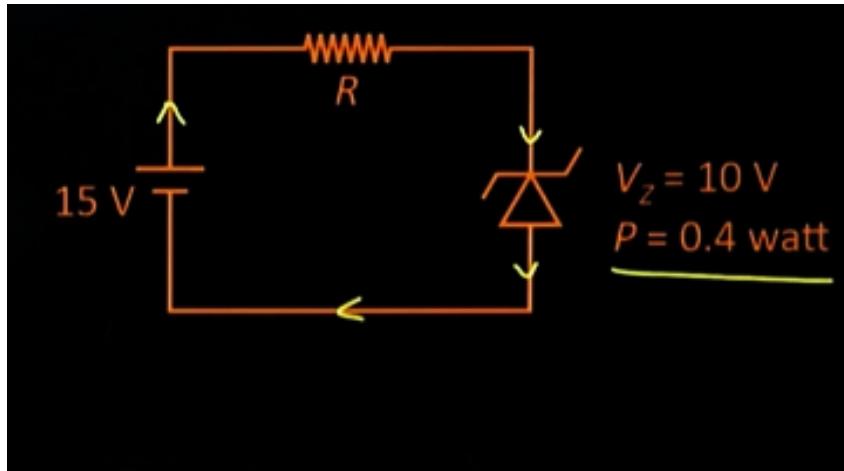
$$\frac{1}{4} = \frac{50}{l_2} \Rightarrow l_2 = 200 \text{ cm}$$

Question: For a microscope focal length of objective is 2 cm and focal length of eyepiece is 4 cm. Tube length is $L = 10$ cm. Magnification for normal adjustment is 5x. Find the value of x.

Options:

(a) 2
 (b) 3
 (c) 4
 (d) 6

Answer: (a)


Solution:

$$M = \frac{L D}{f_o f_e} = 5^x$$

$$= \frac{10 \times 25}{2 \times 5} = 5^2$$

$$x = 2$$

Question: For the given the breakdown voltage of Zener diode is $V_z = 10$ volts and it can with-stand the power dissipation of 0.4 watt. Find the value of resistance R (in Ω)

Options:

- (a) 120Ω
- (b) 125Ω
- (c) 135Ω
- (d) 110Ω

Answer: (b)

Solution:

$$\begin{aligned}
 V &= i_{\max} R_{\min} \quad Vi = P \Rightarrow i = \frac{4}{100} \\
 \Rightarrow \frac{5}{4} \times 100 &= 125 \Omega = R_{\min}
 \end{aligned}$$

Question: If potential varies as distance r as $V(r) = ar^3 + b$. Total magnitude of charge Q inclosed within a sphere of unit radius is $Q = a(\pi a \epsilon_0)$. Find the value of a .

Options:

- (a) 12
- (b) 16
- (c) 14
- (d) 13

Answer: (a)

Solution:

$$V = \alpha r^3 + b$$

$$\mathcal{E} = -\frac{dV}{dr} = -3\alpha r^2$$

Cauchy law

$$E(r) 4\pi r^2 = \frac{Q_{in}}{\epsilon_0}$$

$$12\pi \alpha = \frac{Q_{in}}{\epsilon_0}$$

$$\alpha = 12$$

