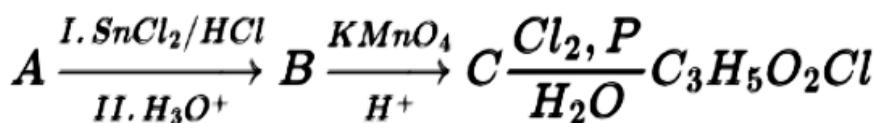



**JEE-Main-24-01-2026 (Memory Based)**  
**[MORNING SHIFT]**  
**Chemistry**

**Question: Match List-I with List-II**

| List-I           | List-II                                                                                   |
|------------------|-------------------------------------------------------------------------------------------|
| A) Vinyl halide  | i)       |
| B) Allyl halide  | ii)    |
| C) Benzyl halide | iii)  |
| D) Aryl halide   | iv)    |


**Select the correct option.**

**Options:**

- (a) A(ii), B(i), C(iii), D(iv)
- (b) A(i), B(ii), C(iii), D(iv)
- (c) A(i), B(ii), C(iv), D(iii)
- (d) A(ii), B(i), C(v), D(iii)

**Answer: (b)**

**Question:**

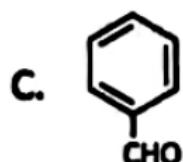
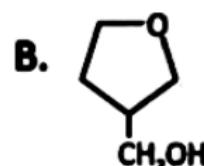


Final product has one chiral centre. Structure of A is

Options:

- (a)
- (b)
- (c)
- (d)

Answer: (a)

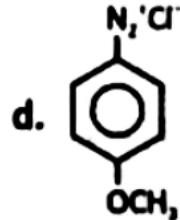
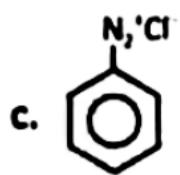
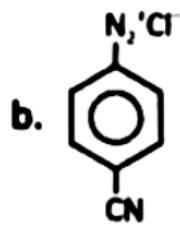
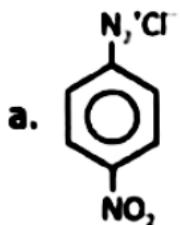


Question: Which of following compound contains 3 unpaired electrons?

Options:

- (a)  $V_2O_5$
- (b)  $[TiF_6]^{3-}$
- (c)  $[CoF_6]^{4-}$
- (d)  $[Fe(CN)_6]^{3-}$

Answer: (c)

Question: Which of the following compounds with give positive Tollen's reagent test?


Options:

- (a) A, B and C only
- (b) A and C only
- (c) A, C and D only
- (d) B, C and D only

Answer: (b)

Question: The correct order of stability of following diazonium ions is



**Options:**

- (a) a < b < c < d
- (b) a < b < d < c
- (c) c < d < b < a
- (d) d < c < n < a

**Answer: (a)**

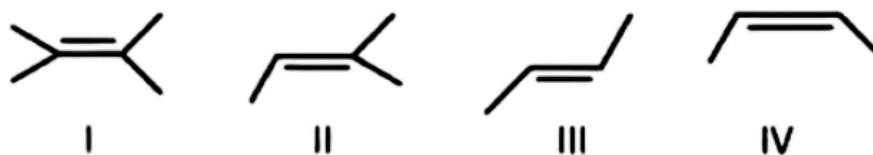
**Question:**  $K_2Cr_2O_7 + I^- + H^+ \rightarrow I_2$  (x = number of moles of  $e^-$  exchanged per mol  $I_2$ )  
 $K_2Cr_2O_7 + S^{2-} \rightarrow S$  (y = number of moles of  $e^-$  exchanged for mole of S) x + y is

**Options:**

- (a) 12
- (b) 9
- (c) 4
- (d) 6

**Answer: (c)**

**Question: Match the column**


| Column-I     | Column-II                             |
|--------------|---------------------------------------|
| A) $IF_3$    | i) $sp^3d^3$ , Pentagonal bipyramidal |
| B) $IF_5$    | ii) $sp^3d^3$ , T-shaped              |
| C) $IF_7$    | iii) $sp^3$ , Tetrahedral             |
| D) $ClO_4^-$ | iv) $sp^3d^2$ , Square pyramidal      |

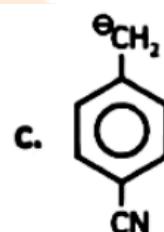
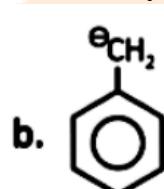
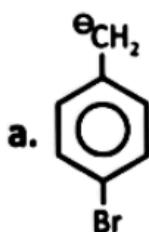
**Options:**

- (a) A-(i), B-(ii), C-(iii), D-(iv)
- (b) A-(ii), B-(i), C-(iv), D-(iii)
- (c) A-(ii), B-(iv), C-(i), D-(iii)
- (d) A-(ii), B-(iii), C-(iv), D-(i)

**Answer: (c)**

**Question:** Consider the following alkene



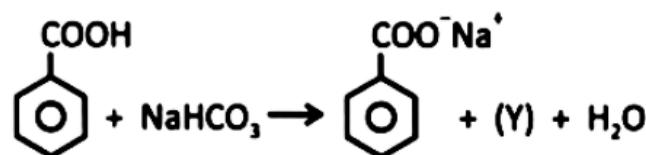
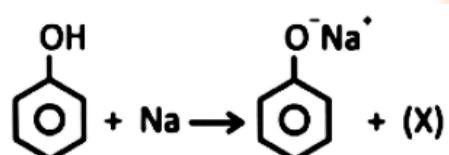



The correct stability order of alkenes is

Options:

- (a) II > I > III > IV
- (b) I > II > IV > III
- (c) I > II > III > IV
- (d) III > I > II > IV

Answer: (c)

Question: The correct order of stability of following species is

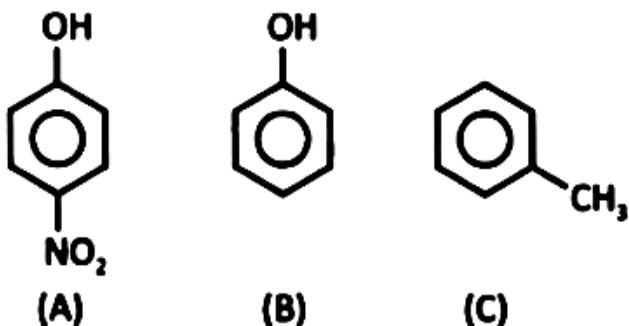

Options:

- (a) e > c > a > b > d
- (b) d > c > b > a > e
- (c) e > a > c > b > d
- (d) e > a > b > c > d

Answer: (a)

Question: What is the sum of molar mass of X and Y formed in the given reactions?




Options:

- (a) 46
- (b) 44
- (c) 2

(d) 42

**Answer: (a)**

**Question:** Consider the following molecules.



**The correct order of dipole moment is**

**Options:**

- (a) A > B > C
- (b) A > C > B
- (c) B > A > C
- (d) C > A > B

**Answer: (a)**

**Question:** Given below are two statements.

**Statement-I:** Atomic radius is always more than ionic radius.

**Statement-II:** The correct order of metallic character is K > Mg > Al > B

**In the light of above statements, choose the correct option.**

**Options:**

- (a) Both Statement-I and Statement-II are correct
- (b) Both Statement-I and Statement-II are incorrect
- (c) Statement-I is correct but statement-II is incorrect
- (d) Statement-I is incorrect but statement-II is correct

**Answer: (d)**

**Question:** Match the following

| Column-I                   | Column-II                          |
|----------------------------|------------------------------------|
| A) Free expansion          | i) $W = -P_{ex}\Delta V$           |
| B) Reversible isothermal   | ii) $W = nC_V dT$                  |
| C) Irreversible isothermal | iii) $W = 0$                       |
| D) Adiabatic reversible    | iv) $W = -nRT \ln \frac{V_r}{V_1}$ |

**Options:**

- (a) A(i), B(iv), C(iii), D(ii)
- (b) A(iii), B(iv), C(i), D(ii)
- (c) A(iv), B(iii), C(ii), D(i)
- (d) A(ii), B(i), C(iii), D(iv)

**Answer: (b)**

**Question:** Non-volatile solute A of mass 0.3 g (Molecular mass = 60), and non-volatile solute B of mass 0.9 g (Molecular mass = 180) in 100 mL H<sub>2</sub>O at 27°C. If K<sub>b</sub> = 0.52 K•Kg•mol<sup>-1</sup>, then elevation of boiling point is

**Options:**

- (a) 0.52 K
- (b) 0.052 K
- (c) 0.026 K
- (d) 0.083 K

**Answer: (b)**

**Question:** A solution contains two group-IV cations, X<sup>2+</sup> and Y<sup>2+</sup>, each at an initial concentration of 0.1 M. H<sub>2</sub>S gas is passed through the solution to form a saturated solution. Given

$$K_{sp} \text{ of } YS = 2 \times 10^{-27} \text{ M}^2$$

$$K_{sp} \text{ of } XS = 1 \times 10^{-27} \text{ M}^2$$

**What is the minimum concentration of sulphide in [S<sup>2-</sup>] required to begin precipitation of YS?**

**Options:**

- (a)  $2 \times 10^{-26}$
- (b)  $10^{-26}$
- (c)  $3.2 \times 10^{-14}$
- (d) 0.1

**Answer: (a)**

**Question:** Two solutes A and B of 0.3 g and 0.9 g respectively (molar mass of A and B are 30 g/mol and 90 g/mol respectively. Calculate of osmotic pressure at 300 K (in atm)

**Options:**

**Answer: (5)**

**Question:** Minimum energy transition of Balmer series (energy line having minimum energy) of H-atom has energy of L eV. If the value of minimum energy of Lyman series (energy line having minimum energy) of H-atom in terms of L is y, then the value of 10y is

**Options:**

**Answer: (2)**

**Question:** Find % of 'N' in 0.5 g organic compound which gives 34 mL N<sub>2</sub>(g) at 715 mm Hg pressure and 300 K Aq. tension = 15 mm Hg

$$(\text{Report to nearest integer}) R = 0.0821 \frac{\text{Lit-atm}}{\text{K-mol}}$$

**Options:**

**Answer: (7)**

**Question:** Find the value of  $\log\left(\frac{K_{catalyst}}{K_{uncatalyst}}\right)$  at 300K. If the charge in activation energy (DEa) is -10 kJ/mol.

(R = 8  $\text{J K}^{-1} \text{ mol}^{-1}$ ) ( $\ln x = 2.31 \log x$ )

**Options:**

**Answer:** (2)

