

CUET 2025 Mathematics Memory based Question Paper

1. The feasible region is bounded by the inequalities:

$$3x + y \geq 90, \quad x + 4y \geq 100, \quad 2x + y \leq 180, \quad x, y \geq 0$$

If the objective function is $Z = px + qy$ and Z is maximized at points $(6, 18)$ and $(0, 30)$, then the relationship between p and q is:

- (A) $p = 15, q = 12$
- (B) $p = 12, q = 15$
- (C) $p = 18, q = 10$
- (D) $p = 10, q = 18$

2. If A is a 2×2 matrix and $|A| = 4$, then $|A^{-1}|$ is:

- (A) 16
- (B) $\frac{1}{4}$
- (C) 4
- (D) 1

3. For a matrix A of order 3×3 , which of the following is true?

- (A) $\text{adj}(A) = A^2$
- (B) $\text{adj}(A) \neq A^2$
- (C) $\text{adj}(A) = A^T$
- (D) $\text{adj}(A) = A^{-1}$

4. If A is a square matrix such that $\text{adj}(\text{adj}(A)) = A$, then $|A|$ is:

- (A) 1
- (B) 3
- (C) 0

(D) 9

5. A person wants to invest at least 20,000 in plan A and 30,000 in plan B. The return rates are 9% and 10% respectively. He wants the total investment to be 80,000 and investment in A should not exceed investment in B. Which of the following is the correct LPP model (maximize return Z)?

- (A) Maximize $Z = 0.09x + 0.1y$
- (B) Maximize $Z = 0.1x + 0.09y$
- (C) Maximize $Z = 0.15x + 0.10y$
- (D) Maximize $Z = 0.10x + 0.09y$

6. The angle between vectors $\mathbf{a} = \hat{i} + \hat{j} - 2\hat{k}$ and $\mathbf{b} = 3\hat{i} - \hat{j} + 2\hat{k}$ is:

- (A) 60°
- (B) 90°
- (C) 45°
- (D) 30°

7. If vectors \mathbf{u} , \mathbf{v} , and \mathbf{w} satisfy $\mathbf{u} + \mathbf{v} + \mathbf{w} = 0$, and \mathbf{u} and \mathbf{v} are unit vectors, while $|\mathbf{w}| = \sqrt{3}$, then the angle between \mathbf{v} and \mathbf{w} is:

- (A) 90°
- (B) 60°
- (C) 120°
- (D) 45°

8. Direction cosines of a vector perpendicular to $\mathbf{a} = \hat{i} + 2\hat{j} + 3\hat{k}$ and $\mathbf{b} = 2\hat{i} - \hat{j} + \hat{k}$ are:

- (A) $\frac{1}{\sqrt{6}}, \frac{1}{\sqrt{6}}, \frac{2}{\sqrt{6}}$
- (B) $\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}$
- (C) $\frac{1}{\sqrt{5}}, \frac{2}{\sqrt{5}}, \frac{1}{\sqrt{5}}$
- (D) $\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}$

